egui/crates/emath/src/lib.rs

355 lines
10 KiB
Rust
Raw Normal View History

2021-01-17 09:52:01 +00:00
//! Opinionated 2D math library for building GUIs.
//!
//! Includes vectors, positions, rectangles etc.
//!
//! Conventions (unless otherwise specified):
2021-01-10 10:37:47 +00:00
//!
//! * All angles are in radians
2021-01-10 10:37:47 +00:00
//! * X+ is right and Y+ is down.
//! * (0,0) is left top.
//! * Dimension order is always `x y`
2022-01-22 07:56:36 +00:00
//!
//! ## Integrating with other math libraries.
//! `emath` does not strive to become a general purpose or all-powerful math library.
//!
//! For that, use something else ([`glam`](https://docs.rs/glam), [`nalgebra`](https://docs.rs/nalgebra), …)
//! and enable the `mint` feature flag in `emath` to enable implicit conversion to/from `emath`.
//!
//! ## Feature flags
#![cfg_attr(feature = "document-features", doc = document_features::document_features!())]
//!
2021-01-10 10:37:47 +00:00
#![allow(clippy::float_cmp)]
2021-01-10 10:37:47 +00:00
#![allow(clippy::manual_range_contains)]
2020-08-09 15:24:32 +00:00
use std::ops::{Add, Div, Mul, RangeInclusive, Sub};
// ----------------------------------------------------------------------------
2021-01-10 09:54:34 +00:00
pub mod align;
mod history;
2021-03-27 15:03:11 +00:00
mod numeric;
mod pos2;
mod rect;
mod rect_transform;
2020-12-25 11:22:10 +00:00
mod rot2;
pub mod smart_aim;
mod vec2;
2020-04-21 05:39:23 +00:00
2021-01-10 09:54:34 +00:00
pub use {
align::{Align, Align2},
history::History,
2021-03-27 15:03:11 +00:00
numeric::*,
2021-01-10 09:54:34 +00:00
pos2::*,
rect::*,
rect_transform::*,
2021-01-10 09:54:34 +00:00
rot2::*,
vec2::*,
};
2020-04-21 05:39:23 +00:00
2019-01-19 16:09:00 +00:00
// ----------------------------------------------------------------------------
/// Helper trait to implement [`lerp`] and [`remap`].
pub trait One {
fn one() -> Self;
}
impl One for f32 {
#[inline(always)]
fn one() -> Self {
1.0
}
}
impl One for f64 {
#[inline(always)]
fn one() -> Self {
1.0
}
}
/// Helper trait to implement [`lerp`] and [`remap`].
pub trait Real:
Copy
+ PartialEq
+ PartialOrd
+ One
+ Add<Self, Output = Self>
+ Sub<Self, Output = Self>
+ Mul<Self, Output = Self>
+ Div<Self, Output = Self>
{
}
impl Real for f32 {}
impl Real for f64 {}
// ----------------------------------------------------------------------------
2020-08-09 15:24:32 +00:00
/// Linear interpolation.
#[inline(always)]
pub fn lerp<R, T>(range: RangeInclusive<R>, t: T) -> R
2019-04-25 16:07:36 +00:00
where
T: Real + Mul<R, Output = R>,
R: Copy + Add<R, Output = R>,
2019-04-25 16:07:36 +00:00
{
(T::one() - t) * *range.start() + t * *range.end()
2018-12-26 16:01:46 +00:00
}
2020-08-09 15:24:32 +00:00
/// Linearly remap a value from one range to another,
/// so that when `x == from.start()` returns `to.start()`
/// and when `x == from.end()` returns `to.end()`.
pub fn remap<T>(x: T, from: RangeInclusive<T>, to: RangeInclusive<T>) -> T
where
T: Real,
{
crate::emath_assert!(from.start() != from.end());
let t = (x - *from.start()) / (*from.end() - *from.start());
2020-04-25 09:14:32 +00:00
lerp(to, t)
2019-01-05 14:28:07 +00:00
}
2021-01-17 09:52:01 +00:00
/// Like [`remap`], but also clamps the value so that the returned value is always in the `to` range.
pub fn remap_clamp<T>(x: T, from: RangeInclusive<T>, to: RangeInclusive<T>) -> T
where
T: Real,
{
if from.end() < from.start() {
return remap_clamp(x, *from.end()..=*from.start(), *to.end()..=*to.start());
}
2020-05-08 19:31:27 +00:00
if x <= *from.start() {
*to.start()
} else if *from.end() <= x {
*to.end()
2018-12-26 16:01:46 +00:00
} else {
crate::emath_assert!(from.start() != from.end());
let t = (x - *from.start()) / (*from.end() - *from.start());
// Ensure no numerical inaccuracies sneak in:
if T::one() <= t {
2020-05-08 19:31:27 +00:00
*to.end()
} else {
lerp(to, t)
}
}
2018-12-26 16:01:46 +00:00
}
2019-01-05 14:28:07 +00:00
2020-08-09 15:24:32 +00:00
/// Round a value to the given number of decimal places.
pub fn round_to_decimals(value: f64, decimal_places: usize) -> f64 {
// This is a stupid way of doing this, but stupid works.
2020-08-09 15:24:32 +00:00
format!("{:.*}", decimal_places, value)
.parse()
2020-11-20 11:28:24 +00:00
.unwrap_or(value)
}
2021-01-10 10:37:47 +00:00
pub fn format_with_minimum_decimals(value: f64, decimals: usize) -> String {
format_with_decimals_in_range(value, decimals..=6)
}
2021-01-10 10:37:47 +00:00
pub fn format_with_decimals_in_range(value: f64, decimal_range: RangeInclusive<usize>) -> String {
let min_decimals = *decimal_range.start();
let max_decimals = *decimal_range.end();
crate::emath_assert!(min_decimals <= max_decimals);
crate::emath_assert!(max_decimals < 100);
let max_decimals = max_decimals.min(16);
let min_decimals = min_decimals.min(max_decimals);
2021-06-22 21:25:54 +00:00
if min_decimals != max_decimals {
// Ugly/slow way of doing this. TODO(emilk): clean up precision.
for decimals in min_decimals..max_decimals {
let text = format!("{:.*}", decimals, value);
let epsilon = 16.0 * f32::EPSILON; // margin large enough to handle most peoples round-tripping needs
if almost_equal(text.parse::<f32>().unwrap(), value as f32, epsilon) {
// Enough precision to show the value accurately - good!
return text;
}
}
// The value has more precision than we expected.
// Probably the value was set not by the slider, but from outside.
// In any case: show the full value
}
2021-06-22 21:25:54 +00:00
format!("{:.*}", max_decimals, value)
}
/// Return true when arguments are the same within some rounding error.
///
/// For instance `almost_equal(x, x.to_degrees().to_radians(), f32::EPSILON)` should hold true for all x.
/// The `epsilon` can be `f32::EPSILON` to handle simple transforms (like degrees -> radians)
/// but should be higher to handle more complex transformations.
pub fn almost_equal(a: f32, b: f32, epsilon: f32) -> bool {
if a == b {
true // handle infinites
} else {
let abs_max = a.abs().max(b.abs());
abs_max <= epsilon || ((a - b).abs() / abs_max) <= epsilon
}
}
2020-10-17 09:00:58 +00:00
#[allow(clippy::approx_constant)]
#[test]
fn test_format() {
assert_eq!(format_with_minimum_decimals(1_234_567.0, 0), "1234567");
assert_eq!(format_with_minimum_decimals(1_234_567.0, 1), "1234567.0");
assert_eq!(format_with_minimum_decimals(3.14, 2), "3.14");
assert_eq!(format_with_minimum_decimals(3.14, 3), "3.140");
assert_eq!(
format_with_minimum_decimals(std::f64::consts::PI, 2),
"3.14159"
);
}
#[test]
fn test_almost_equal() {
for &x in &[
0.0_f32,
f32::MIN_POSITIVE,
1e-20,
1e-10,
f32::EPSILON,
0.1,
0.99,
1.0,
1.001,
1e10,
f32::MAX / 100.0,
// f32::MAX, // overflows in rad<->deg test
f32::INFINITY,
] {
for &x in &[-x, x] {
for roundtrip in &[
|x: f32| x.to_degrees().to_radians(),
|x: f32| x.to_radians().to_degrees(),
] {
let epsilon = f32::EPSILON;
assert!(
almost_equal(x, roundtrip(x), epsilon),
"{} vs {}",
x,
roundtrip(x)
);
}
}
}
}
#[test]
fn test_remap() {
assert_eq!(remap_clamp(1.0, 0.0..=1.0, 0.0..=16.0), 16.0);
assert_eq!(remap_clamp(1.0, 1.0..=0.0, 16.0..=0.0), 16.0);
assert_eq!(remap_clamp(0.5, 1.0..=0.0, 16.0..=0.0), 8.0);
}
// ----------------------------------------------------------------------------
/// Extends `f32`, [`Vec2`] etc with `at_least` and `at_most` as aliases for `max` and `min`.
pub trait NumExt {
/// More readable version of `self.max(lower_limit)`
fn at_least(self, lower_limit: Self) -> Self;
/// More readable version of `self.min(upper_limit)`
fn at_most(self, upper_limit: Self) -> Self;
}
macro_rules! impl_num_ext {
($t: ty) => {
impl NumExt for $t {
#[inline(always)]
fn at_least(self, lower_limit: Self) -> Self {
self.max(lower_limit)
}
#[inline(always)]
fn at_most(self, upper_limit: Self) -> Self {
self.min(upper_limit)
}
}
};
}
impl_num_ext!(u8);
impl_num_ext!(u16);
impl_num_ext!(u32);
impl_num_ext!(u64);
impl_num_ext!(u128);
impl_num_ext!(usize);
impl_num_ext!(i8);
impl_num_ext!(i16);
impl_num_ext!(i32);
impl_num_ext!(i64);
impl_num_ext!(i128);
impl_num_ext!(isize);
impl_num_ext!(f32);
impl_num_ext!(f64);
impl_num_ext!(Vec2);
impl_num_ext!(Pos2);
2021-05-08 21:42:17 +00:00
// ----------------------------------------------------------------------------
/// Wrap angle to `[-PI, PI]` range.
pub fn normalized_angle(mut angle: f32) -> f32 {
use std::f32::consts::{PI, TAU};
angle %= TAU;
if angle > PI {
angle -= TAU;
} else if angle < -PI {
angle += TAU;
}
angle
}
#[test]
fn test_normalized_angle() {
macro_rules! almost_eq {
2021-10-02 19:08:00 +00:00
($left: expr, $right: expr) => {
2021-05-08 21:42:17 +00:00
let left = $left;
let right = $right;
assert!((left - right).abs() < 1e-6, "{} != {}", left, right);
};
}
use std::f32::consts::TAU;
almost_eq!(normalized_angle(-3.0 * TAU), 0.0);
almost_eq!(normalized_angle(-2.3 * TAU), -0.3 * TAU);
almost_eq!(normalized_angle(-TAU), 0.0);
almost_eq!(normalized_angle(0.0), 0.0);
almost_eq!(normalized_angle(TAU), 0.0);
almost_eq!(normalized_angle(2.7 * TAU), -0.3 * TAU);
}
// ----------------------------------------------------------------------------
2022-07-29 14:07:35 +00:00
/// Calculate a lerp-factor for exponential smoothing using a time step.
///
/// * `exponential_smooth_factor(0.90, 1.0, dt)`: reach 90% in 1.0 seconds
/// * `exponential_smooth_factor(0.50, 0.2, dt)`: reach 50% in 0.2 seconds
///
/// Example:
/// ```
/// # use emath::{lerp, exponential_smooth_factor};
/// # let (mut smoothed_value, target_value, dt) = (0.0_f32, 1.0_f32, 0.01_f32);
/// let t = exponential_smooth_factor(0.90, 0.2, dt); // reach 90% in 0.2 seconds
/// smoothed_value = lerp(smoothed_value..=target_value, t);
/// ```
pub fn exponential_smooth_factor(
reach_this_fraction: f32,
in_this_many_seconds: f32,
dt: f32,
) -> f32 {
1.0 - (1.0 - reach_this_fraction).powf(dt / in_this_many_seconds)
}
// ----------------------------------------------------------------------------
/// An assert that is only active when `emath` is compiled with the `extra_asserts` feature
/// or with the `extra_debug_asserts` feature in debug builds.
#[macro_export]
macro_rules! emath_assert {
2021-10-02 19:08:00 +00:00
($($arg: tt)*) => {
if cfg!(any(
feature = "extra_asserts",
all(feature = "extra_debug_asserts", debug_assertions),
)) {
assert!($($arg)*);
}
}
}