euterpe-source/packages/visualizer/src/index.ts

349 lines
13 KiB
TypeScript
Raw Normal View History

2023-05-24 13:23:58 +00:00
export enum SmoothingAlgorythm {
Linear,
BezierPerpendicular,
CatmullRom,
BezierWeighted,
}
export enum ShapeType {
Circle,
Line,
/*To be Implmeneted
Waveform,
FullSongWaveForm
*/
}
type Point = {
x: number,
y: number,
}
type Shape = {
shape_type: ShapeType,
//Algo-rythm, because this is about music. Get it? xd
smoothing_algorythm: SmoothingAlgorythm
points: Point[]
}
export function AudioVisual(
analyzer_node: AnalyserNode,
svg_injecting_element: SVGSVGElement,
shape: Shape,
buffer_length: number,
fft_multiplier: number,
fft_offset: number,
from_fft_range: number,
to_fft_range: number,
point_count: number,
canvas_height: number,
canvas_width: number,
) {
let fft_data = new Float32Array(buffer_length)
function get_cured_frequency_data() {
fft_data = new Float32Array(buffer_length)
analyzer_node.getFloatFrequencyData(fft_data)
const from = Math.round((point_count / 100) * from_fft_range)
const to = Math.round(buffer_length - (buffer_length / 100) * to_fft_range)
const squeeze_factor = Math.round((buffer_length - to) / point_count)
const return_array = new Array(point_count)
for (let i = 0; i < point_count + 1; i++) {
return_array[i] = fft_data[from + i * squeeze_factor]
}
return return_array
}
function normalise_perpendicular_anchors(x: number, y: number) {
const magnitude = Math.sqrt(x * x + y * y)
return [x / magnitude, y / magnitude]
}
function create_perpendicular_anchors(arr: { x: number, y: number }[]) {
const anchors = []
switch (shape.shape_type) {
case ShapeType.Circle: {
const pointDistance = 7
for (let curPoint = 0; curPoint < arr.length; curPoint++) {
const [dx, dy] = normalise_perpendicular_anchors(arr[curPoint].x, arr[curPoint].y)
const perpendicular = [-dy, dx]
anchors.push({
leftAnchor: {
x: arr[curPoint].x + pointDistance * perpendicular[0],
y: arr[curPoint].y + pointDistance * perpendicular[1],
},
rightAnchor: {
x: arr[curPoint].x - pointDistance * perpendicular[0],
y: arr[curPoint].y - pointDistance * perpendicular[1],
},
})
}
break
}
case ShapeType.Line: {
const pointDistance = canvas_width / arr.length
for (let curPoint = 0; curPoint < arr.length; curPoint++) {
anchors.push({
leftAnchor: {
x: pointDistance * curPoint - pointDistance / 3,
y: arr[curPoint].y,
},
rightAnchor: {
x: pointDistance * curPoint + pointDistance / 3,
y: arr[curPoint].y,
},
})
}
}
}
return anchors
}
function catmull_rom_smooth(arr: { x: number, y: number }[], k: number) {
if (k == null) k = 1
const last = arr.length - 2
let path = "M" + [arr[0].x, arr[0].y]
for (let i = 0; i < arr.length - 1; i++) {
const x0 = i ? arr[i - 1].x : arr[0].x
const y0 = i ? arr[i - 1].y : arr[0].y
const x1 = arr[i].x
const y1 = arr[i].y
const x2 = arr[i + 1].x
const y2 = arr[i + 1].y
let subx = y2
let suby = y2
//Makes the last line before Z a bit less jarring
if (shape.shape_type == ShapeType.Circle) {
subx = arr[0].x
suby = arr[0].y
}
const x3 = i !== last ? arr[i + 2].x : subx
const y3 = i !== last ? arr[i + 2].y : suby
const cp1x = x1 + (x2 - x0) / 6 * k
const cp1y = y1 + (y2 - y0) / 6 * k
const cp2x = x2 - (x3 - x1) / 6 * k
const cp2y = y2 - (y3 - y1) / 6 * k
path += "C" + [cp1x, cp1y, cp2x, cp2y, x2, y2]
}
path += " Z"
return path
}
function mutate_points() {
const mutated_points = []
const frequency_data = get_cured_frequency_data()
const out_range = [0, canvas_height]
const in_range = [-165, -30]
switch (shape.shape_type) {
case ShapeType.Line: {
for (let i = 0; i < frequency_data.length - 1; i++) {
mutated_points.push({
x: shape.points[i].x /** ((Math.max(FFTDataArray[i] + 100)) * 4)*/,
y: shape.points[i].y - convert_range(frequency_data[i] * fft_multiplier + fft_offset, in_range, out_range),
})
}
break
}
case ShapeType.Circle: {
for (let i = 0; i < frequency_data.length - 1; i++) {
const new_i = i > (frequency_data.length - 1) / 2 ? frequency_data.length - 1 - i : i
mutated_points.push({
x: shape.points[i].x * Math.max((frequency_data[new_i] * fft_multiplier + fft_offset) / 50, 1) + canvas_width / 2,
y: shape.points[i].y * Math.max((frequency_data[new_i] * fft_multiplier + fft_offset) / 50, 1) + canvas_height / 2,
})
/* TODO: IMPLEMENT SCALING TO BEAT
this.injectingHTMLElement.parentElement.style.transform = `scale(${(100 + Math.max((frequencyData[2] * 2 + 130) / 5, 1)) / 100})`
*/
}
break
}
}
return mutated_points
}
function convert_range(value: number, r1: number[], r2: number[]) {
if (!isFinite(value)) return 0
return ((value - r1[0]) * (r2[1] - r2[0])) / (r1[1] - r1[0]) + r2[0]
}
function create_svg_element() {
let path
const arr = mutate_points()
switch (shape.shape_type) {
case ShapeType.Line: {
path = `M ${0} ${canvas_height} `
break
}
case ShapeType.Circle: {
path = `M ${arr[0].x} ${arr[0].y} `
}
}
switch (shape.smoothing_algorythm) {
case SmoothingAlgorythm.Linear: {
for (let i = 0; i < arr.length; i++) {
path += `L ${arr[i].x},${arr[i].y} `
}
if (shape.shape_type == ShapeType.Line) {
path += `L ${this.canvasWidth} ${this.canvasHeight / 2} `
//path += `L ${canvas_width} ${canvas_height} `
}
path += `Z `
break
}
case SmoothingAlgorythm.BezierPerpendicular: {
const anchors = create_perpendicular_anchors(arr)
for (let i = 1; i < arr.length; i++) {
path += `C ${anchors[i - 1].rightAnchor.x} ${anchors[i - 1].rightAnchor.y} ${anchors[i].leftAnchor.x} ${anchors[i].leftAnchor.y} ${arr[i].x} ${arr[i].y} `
}
if (shape.shape_type == ShapeType.Line) {
//path += `L ${this.canvasWidth} ${this.canvasHeight / 2} `
path += `L ${canvas_width} ${canvas_height} `
}
path += `Z `
break
}
case SmoothingAlgorythm.BezierWeighted: {
/*THIS IS VERY MUCH BROKEN ATM :(
for (let i = 2; i < arr.length; i++) {
const end = [arr.x[i], arr.y[i]] // the current point is the end of this segment of the curve
path += `C ${startControl[0]} ${startControl[1]} ${endControl[0]} ${endControl[1]} ${end[0]} ${end[1]}`
}*/
console.error("BezierWeighted not implemented yet...")
break
}
case SmoothingAlgorythm.CatmullRom: {
path = catmull_rom_smooth(arr, 1)
break
}
}
return `<path width="100%" height="100%" d="${path}"/>`
}
function draw() {
analyzer_node.getFloatFrequencyData(fft_data)
svg_injecting_element.innerHTML = create_svg_element()
requestAnimationFrame(draw.bind(AudioVisual))
}
return {
draw,
}
}
export function AudioVisualBuilder(analyzer_node: AnalyserNode, svg_injecting_element: SVGSVGElement) {
let canvas_height: number
let canvas_width: number
let buffer_length = analyzer_node.frequencyBinCount
let smoothing_algorythm = SmoothingAlgorythm.Linear
let fft_time_smoothing = 0.1
let fft_size = 4096
let fft_multipier = 1.5
let fft_offset = -50
let from_fft_range = 0
let to_fft_range = 100
let point_count: number
let scale_to_beat = false
let shape: Shape
function start() {
canvas_width = svg_injecting_element.viewBox.baseVal.width // viewbox does exist on svg element, ignore error...
canvas_height = svg_injecting_element.viewBox.baseVal.height
return this
}
function set_fft_time_smoothing(fft_time_smoothing_i: number) {
analyzer_node.smoothingTimeConstant = fft_time_smoothing = fft_time_smoothing_i
return this
}
function set_fft_size(fft_size_i: number) {
if (!(fft_size && !(fft_size_i & (fft_size_i - 1)))) throw Error("fft_size not power of two")
analyzer_node.fftSize = fft_size = fft_size_i
buffer_length = analyzer_node.frequencyBinCount
return this
}
function set_fft_data_tresholds({ from_fft_range_i = 0, to_fft_range_i = 100, point_count_i = Math.round((buffer_length / 100) * (from_fft_range_i - to_fft_range_i)), fft_multiplier_i = 2, fft_offset_i = -50 }) {
from_fft_range = from_fft_range_i
to_fft_range = to_fft_range_i
point_count = point_count_i
fft_multipier = fft_multiplier_i
fft_offset = fft_offset_i
return this
}
function set_smoothing_algorythm(algorythm: SmoothingAlgorythm) {
smoothing_algorythm = algorythm
return this
}
function enable_scaling_to_beat(enable = false) {
scale_to_beat = enable
}
function create_shape(shape_type: ShapeType): Shape {
const point_amount = get_cured_frequency_data(analyzer_node, buffer_length, from_fft_range, to_fft_range, point_count).length
let new_shape: Shape
switch (shape_type) {
case ShapeType.Line: {
const points = []
for (let i = 0; i < point_amount; i++) {
points.push({
x: (canvas_width / point_amount) * i,
y: canvas_height / 2 - (0 / point_amount) * i,
})
}
new_shape = { shape_type, points, smoothing_algorythm }
break
}
case ShapeType.Circle: {
const points = []
const radius = canvas_height > canvas_width ? canvas_height / 5 : canvas_width / 5
for (let i = 0; i < point_amount; i++) {
points.push({
x: Math.cos(((2 * Math.PI) / point_amount) * i - Math.PI / 2) * radius,
y: Math.sin(((2 * Math.PI) / point_amount) * i - Math.PI / 2) * radius,
})
}
new_shape = { shape_type, points, smoothing_algorythm }
break
}
}
shape = new_shape
return this
}
function get_cured_frequency_data(analyzer_node: AnalyserNode, buffer_length: number, from_range: number, to_range: number, point_count: number) {
const fft_data_array = new Float32Array(buffer_length)
analyzer_node.getFloatFrequencyData(fft_data_array)
const from = Math.round((point_count / 100) * from_range)
const to = Math.round(buffer_length - (buffer_length / 100) * to_range)
const squeezeFactor = Math.round((buffer_length - to) / point_count)
const return_array = new Array(point_count)
for (let i = 0; i < point_count; i++) {
return_array[i] = fft_data_array[from + i * squeezeFactor]
}
return return_array
}
function build(shape_type: ShapeType) {
create_shape(shape_type)
return AudioVisual(analyzer_node, svg_injecting_element, shape, buffer_length, fft_multipier, fft_offset, from_fft_range, to_fft_range, point_count, canvas_height, canvas_width)
}
return {
start,
set_fft_size,
enable_scaling_to_beat,
set_fft_time_smoothing,
set_fft_data_tresholds,
set_smoothing_algorythm,
build
}
}