egui/crates/epaint/src/shape.rs
2022-12-05 12:59:02 +01:00

846 lines
24 KiB
Rust

//! The different shapes that can be painted.
use std::ops::RangeInclusive;
use std::{any::Any, sync::Arc};
use crate::{
text::{FontId, Fonts, Galley},
Color32, Mesh, Stroke, TextureId,
};
use emath::*;
pub use crate::{CubicBezierShape, QuadraticBezierShape};
/// A paint primitive such as a circle or a piece of text.
/// Coordinates are all screen space points (not physical pixels).
///
/// You should generally recreate your [`Shape`]s each frame,
/// but storing them should also be fine with one exception:
/// [`Shape::Text`] depends on the current `pixels_per_point` (dpi scale)
/// and so must be recreated every time `pixels_per_point` changes.
#[must_use = "Add a Shape to a Painter"]
#[derive(Clone, Debug, PartialEq)]
pub enum Shape {
/// Paint nothing. This can be useful as a placeholder.
Noop,
/// Recursively nest more shapes - sometimes a convenience to be able to do.
/// For performance reasons it is better to avoid it.
Vec(Vec<Shape>),
/// Circle with optional outline and fill.
Circle(CircleShape),
/// A line between two points.
LineSegment { points: [Pos2; 2], stroke: Stroke },
/// A series of lines between points.
/// The path can have a stroke and/or fill (if closed).
Path(PathShape),
/// Rectangle with optional outline and fill.
Rect(RectShape),
/// Text.
///
/// This needs to be recreated if `pixels_per_point` (dpi scale) changes.
Text(TextShape),
/// A general triangle mesh.
///
/// Can be used to display images.
Mesh(Mesh),
/// A quadratic [Bézier Curve](https://en.wikipedia.org/wiki/B%C3%A9zier_curve).
QuadraticBezier(QuadraticBezierShape),
/// A cubic [Bézier Curve](https://en.wikipedia.org/wiki/B%C3%A9zier_curve).
CubicBezier(CubicBezierShape),
/// Backend-specific painting.
Callback(PaintCallback),
}
#[test]
fn shape_impl_send_sync() {
fn assert_send_sync<T: Send + Sync>() {}
assert_send_sync::<Shape>();
}
impl From<Vec<Shape>> for Shape {
#[inline(always)]
fn from(shapes: Vec<Shape>) -> Self {
Self::Vec(shapes)
}
}
impl From<Mesh> for Shape {
#[inline(always)]
fn from(mesh: Mesh) -> Self {
Self::Mesh(mesh)
}
}
/// ## Constructors
impl Shape {
/// A line between two points.
/// More efficient than calling [`Self::line`].
#[inline]
pub fn line_segment(points: [Pos2; 2], stroke: impl Into<Stroke>) -> Self {
Self::LineSegment {
points,
stroke: stroke.into(),
}
}
/// A horizontal line.
pub fn hline(x: RangeInclusive<f32>, y: f32, stroke: impl Into<Stroke>) -> Self {
Shape::LineSegment {
points: [pos2(*x.start(), y), pos2(*x.end(), y)],
stroke: stroke.into(),
}
}
/// A vertical line.
pub fn vline(x: f32, y: RangeInclusive<f32>, stroke: impl Into<Stroke>) -> Self {
Shape::LineSegment {
points: [pos2(x, *y.start()), pos2(x, *y.end())],
stroke: stroke.into(),
}
}
/// A line through many points.
///
/// Use [`Self::line_segment`] instead if your line only connects two points.
#[inline]
pub fn line(points: Vec<Pos2>, stroke: impl Into<Stroke>) -> Self {
Self::Path(PathShape::line(points, stroke))
}
/// A line that closes back to the start point again.
#[inline]
pub fn closed_line(points: Vec<Pos2>, stroke: impl Into<Stroke>) -> Self {
Self::Path(PathShape::closed_line(points, stroke))
}
/// Turn a line into equally spaced dots.
pub fn dotted_line(
path: &[Pos2],
color: impl Into<Color32>,
spacing: f32,
radius: f32,
) -> Vec<Self> {
let mut shapes = Vec::new();
points_from_line(path, spacing, radius, color.into(), &mut shapes);
shapes
}
/// Turn a line into dashes.
pub fn dashed_line(
path: &[Pos2],
stroke: impl Into<Stroke>,
dash_length: f32,
gap_length: f32,
) -> Vec<Self> {
let mut shapes = Vec::new();
dashes_from_line(path, stroke.into(), dash_length, gap_length, &mut shapes);
shapes
}
/// Turn a line into dashes. If you need to create many dashed lines use this instead of
/// [`Self::dashed_line`]
pub fn dashed_line_many(
points: &[Pos2],
stroke: impl Into<Stroke>,
dash_length: f32,
gap_length: f32,
shapes: &mut Vec<Shape>,
) {
dashes_from_line(points, stroke.into(), dash_length, gap_length, shapes);
}
/// A convex polygon with a fill and optional stroke.
///
/// The most performant winding order is clockwise.
#[inline]
pub fn convex_polygon(
points: Vec<Pos2>,
fill: impl Into<Color32>,
stroke: impl Into<Stroke>,
) -> Self {
Self::Path(PathShape::convex_polygon(points, fill, stroke))
}
#[inline]
pub fn circle_filled(center: Pos2, radius: f32, fill_color: impl Into<Color32>) -> Self {
Self::Circle(CircleShape::filled(center, radius, fill_color))
}
#[inline]
pub fn circle_stroke(center: Pos2, radius: f32, stroke: impl Into<Stroke>) -> Self {
Self::Circle(CircleShape::stroke(center, radius, stroke))
}
#[inline]
pub fn rect_filled(
rect: Rect,
rounding: impl Into<Rounding>,
fill_color: impl Into<Color32>,
) -> Self {
Self::Rect(RectShape::filled(rect, rounding, fill_color))
}
#[inline]
pub fn rect_stroke(
rect: Rect,
rounding: impl Into<Rounding>,
stroke: impl Into<Stroke>,
) -> Self {
Self::Rect(RectShape::stroke(rect, rounding, stroke))
}
#[allow(clippy::needless_pass_by_value)]
pub fn text(
fonts: &Fonts,
pos: Pos2,
anchor: Align2,
text: impl ToString,
font_id: FontId,
color: Color32,
) -> Self {
let galley = fonts.layout_no_wrap(text.to_string(), font_id, color);
let rect = anchor.anchor_rect(Rect::from_min_size(pos, galley.size()));
Self::galley(rect.min, galley)
}
#[inline]
pub fn galley(pos: Pos2, galley: Arc<Galley>) -> Self {
TextShape::new(pos, galley).into()
}
#[inline]
/// The text color in the [`Galley`] will be replaced with the given color.
pub fn galley_with_color(pos: Pos2, galley: Arc<Galley>, text_color: Color32) -> Self {
TextShape {
override_text_color: Some(text_color),
..TextShape::new(pos, galley)
}
.into()
}
pub fn mesh(mesh: Mesh) -> Self {
crate::epaint_assert!(mesh.is_valid());
Self::Mesh(mesh)
}
/// An image at the given position.
///
/// `uv` should normally be `Rect::from_min_max(pos2(0.0, 0.0), pos2(1.0, 1.0))`
/// unless you want to crop or flip the image.
///
/// `tint` is a color multiplier. Use [`Color32::WHITE`] if you don't want to tint the image.
pub fn image(texture_id: TextureId, rect: Rect, uv: Rect, tint: Color32) -> Self {
let mut mesh = Mesh::with_texture(texture_id);
mesh.add_rect_with_uv(rect, uv, tint);
Shape::mesh(mesh)
}
/// The visual bounding rectangle (includes stroke widths)
pub fn visual_bounding_rect(&self) -> Rect {
match self {
Self::Noop => Rect::NOTHING,
Self::Vec(shapes) => {
let mut rect = Rect::NOTHING;
for shape in shapes {
rect = rect.union(shape.visual_bounding_rect());
}
rect
}
Self::Circle(circle_shape) => circle_shape.visual_bounding_rect(),
Self::LineSegment { points, stroke } => {
if stroke.is_empty() {
Rect::NOTHING
} else {
Rect::from_two_pos(points[0], points[1]).expand(stroke.width / 2.0)
}
}
Self::Path(path_shape) => path_shape.visual_bounding_rect(),
Self::Rect(rect_shape) => rect_shape.visual_bounding_rect(),
Self::Text(text_shape) => text_shape.visual_bounding_rect(),
Self::Mesh(mesh) => mesh.calc_bounds(),
Self::QuadraticBezier(bezier) => bezier.visual_bounding_rect(),
Self::CubicBezier(bezier) => bezier.visual_bounding_rect(),
Self::Callback(custom) => custom.rect,
}
}
}
/// ## Inspection and transforms
impl Shape {
#[inline(always)]
pub fn texture_id(&self) -> super::TextureId {
if let Shape::Mesh(mesh) = self {
mesh.texture_id
} else {
super::TextureId::default()
}
}
/// Move the shape by this many points, in-place.
pub fn translate(&mut self, delta: Vec2) {
match self {
Shape::Noop => {}
Shape::Vec(shapes) => {
for shape in shapes {
shape.translate(delta);
}
}
Shape::Circle(circle_shape) => {
circle_shape.center += delta;
}
Shape::LineSegment { points, .. } => {
for p in points {
*p += delta;
}
}
Shape::Path(path_shape) => {
for p in &mut path_shape.points {
*p += delta;
}
}
Shape::Rect(rect_shape) => {
rect_shape.rect = rect_shape.rect.translate(delta);
}
Shape::Text(text_shape) => {
text_shape.pos += delta;
}
Shape::Mesh(mesh) => {
mesh.translate(delta);
}
Shape::QuadraticBezier(bezier_shape) => {
bezier_shape.points[0] += delta;
bezier_shape.points[1] += delta;
bezier_shape.points[2] += delta;
}
Shape::CubicBezier(cubie_curve) => {
for p in &mut cubie_curve.points {
*p += delta;
}
}
Shape::Callback(shape) => {
shape.rect = shape.rect.translate(delta);
}
}
}
}
// ----------------------------------------------------------------------------
/// How to paint a circle.
#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct CircleShape {
pub center: Pos2,
pub radius: f32,
pub fill: Color32,
pub stroke: Stroke,
}
impl CircleShape {
#[inline]
pub fn filled(center: Pos2, radius: f32, fill_color: impl Into<Color32>) -> Self {
Self {
center,
radius,
fill: fill_color.into(),
stroke: Default::default(),
}
}
#[inline]
pub fn stroke(center: Pos2, radius: f32, stroke: impl Into<Stroke>) -> Self {
Self {
center,
radius,
fill: Default::default(),
stroke: stroke.into(),
}
}
/// The visual bounding rectangle (includes stroke width)
pub fn visual_bounding_rect(&self) -> Rect {
if self.fill == Color32::TRANSPARENT && self.stroke.is_empty() {
Rect::NOTHING
} else {
Rect::from_center_size(
self.center,
Vec2::splat(self.radius * 2.0 + self.stroke.width),
)
}
}
}
impl From<CircleShape> for Shape {
#[inline(always)]
fn from(shape: CircleShape) -> Self {
Self::Circle(shape)
}
}
// ----------------------------------------------------------------------------
/// A path which can be stroked and/or filled (if closed).
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct PathShape {
/// Filled paths should prefer clockwise order.
pub points: Vec<Pos2>,
/// If true, connect the first and last of the points together.
/// This is required if `fill != TRANSPARENT`.
pub closed: bool,
/// Fill is only supported for convex polygons.
pub fill: Color32,
/// Color and thickness of the line.
pub stroke: Stroke,
}
impl PathShape {
/// A line through many points.
///
/// Use [`Shape::line_segment`] instead if your line only connects two points.
#[inline]
pub fn line(points: Vec<Pos2>, stroke: impl Into<Stroke>) -> Self {
PathShape {
points,
closed: false,
fill: Default::default(),
stroke: stroke.into(),
}
}
/// A line that closes back to the start point again.
#[inline]
pub fn closed_line(points: Vec<Pos2>, stroke: impl Into<Stroke>) -> Self {
PathShape {
points,
closed: true,
fill: Default::default(),
stroke: stroke.into(),
}
}
/// A convex polygon with a fill and optional stroke.
///
/// The most performant winding order is clockwise.
#[inline]
pub fn convex_polygon(
points: Vec<Pos2>,
fill: impl Into<Color32>,
stroke: impl Into<Stroke>,
) -> Self {
PathShape {
points,
closed: true,
fill: fill.into(),
stroke: stroke.into(),
}
}
/// The visual bounding rectangle (includes stroke width)
#[inline]
pub fn visual_bounding_rect(&self) -> Rect {
if self.fill == Color32::TRANSPARENT && self.stroke.is_empty() {
Rect::NOTHING
} else {
Rect::from_points(&self.points).expand(self.stroke.width / 2.0)
}
}
}
impl From<PathShape> for Shape {
#[inline(always)]
fn from(shape: PathShape) -> Self {
Self::Path(shape)
}
}
// ----------------------------------------------------------------------------
/// How to paint a rectangle.
#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct RectShape {
pub rect: Rect,
/// How rounded the corners are. Use `Rounding::none()` for no rounding.
pub rounding: Rounding,
/// How to fill the rectangle.
pub fill: Color32,
/// The thickness and color of the outline.
pub stroke: Stroke,
}
impl RectShape {
#[inline]
pub fn filled(
rect: Rect,
rounding: impl Into<Rounding>,
fill_color: impl Into<Color32>,
) -> Self {
Self {
rect,
rounding: rounding.into(),
fill: fill_color.into(),
stroke: Default::default(),
}
}
#[inline]
pub fn stroke(rect: Rect, rounding: impl Into<Rounding>, stroke: impl Into<Stroke>) -> Self {
Self {
rect,
rounding: rounding.into(),
fill: Default::default(),
stroke: stroke.into(),
}
}
/// The visual bounding rectangle (includes stroke width)
#[inline]
pub fn visual_bounding_rect(&self) -> Rect {
if self.fill == Color32::TRANSPARENT && self.stroke.is_empty() {
Rect::NOTHING
} else {
self.rect.expand(self.stroke.width / 2.0)
}
}
}
impl From<RectShape> for Shape {
#[inline(always)]
fn from(shape: RectShape) -> Self {
Self::Rect(shape)
}
}
#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
/// How rounded the corners of things should be
pub struct Rounding {
/// Radius of the rounding of the North-West (left top) corner.
pub nw: f32,
/// Radius of the rounding of the North-East (right top) corner.
pub ne: f32,
/// Radius of the rounding of the South-West (left bottom) corner.
pub sw: f32,
/// Radius of the rounding of the South-East (right bottom) corner.
pub se: f32,
}
impl Default for Rounding {
#[inline]
fn default() -> Self {
Self::none()
}
}
impl From<f32> for Rounding {
#[inline]
fn from(radius: f32) -> Self {
Self {
nw: radius,
ne: radius,
sw: radius,
se: radius,
}
}
}
impl Rounding {
#[inline]
pub fn same(radius: f32) -> Self {
Self {
nw: radius,
ne: radius,
sw: radius,
se: radius,
}
}
#[inline]
pub fn none() -> Self {
Self {
nw: 0.0,
ne: 0.0,
sw: 0.0,
se: 0.0,
}
}
/// Do all corners have the same rounding?
#[inline]
pub fn is_same(&self) -> bool {
self.nw == self.ne && self.nw == self.sw && self.nw == self.se
}
/// Make sure each corner has a rounding of at least this.
#[inline]
pub fn at_least(&self, min: f32) -> Self {
Self {
nw: self.nw.max(min),
ne: self.ne.max(min),
sw: self.sw.max(min),
se: self.se.max(min),
}
}
/// Make sure each corner has a rounding of at most this.
#[inline]
pub fn at_most(&self, max: f32) -> Self {
Self {
nw: self.nw.min(max),
ne: self.ne.min(max),
sw: self.sw.min(max),
se: self.se.min(max),
}
}
}
// ----------------------------------------------------------------------------
/// How to paint some text on screen.
///
/// This needs to be recreated if `pixels_per_point` (dpi scale) changes.
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct TextShape {
/// Top left corner of the first character.
pub pos: Pos2,
/// The layed out text, from [`Fonts::layout_job`].
pub galley: Arc<Galley>,
/// Add this underline to the whole text.
/// You can also set an underline when creating the galley.
pub underline: Stroke,
/// If set, the text color in the galley will be ignored and replaced
/// with the given color.
/// This will NOT replace background color nor strikethrough/underline color.
pub override_text_color: Option<Color32>,
/// Rotate text by this many radians clockwise.
/// The pivot is `pos` (the upper left corner of the text).
pub angle: f32,
}
impl TextShape {
#[inline]
pub fn new(pos: Pos2, galley: Arc<Galley>) -> Self {
Self {
pos,
galley,
underline: Stroke::NONE,
override_text_color: None,
angle: 0.0,
}
}
/// The visual bounding rectangle
#[inline]
pub fn visual_bounding_rect(&self) -> Rect {
self.galley.mesh_bounds.translate(self.pos.to_vec2())
}
}
impl From<TextShape> for Shape {
#[inline(always)]
fn from(shape: TextShape) -> Self {
Self::Text(shape)
}
}
// ----------------------------------------------------------------------------
/// Creates equally spaced filled circles from a line.
fn points_from_line(
path: &[Pos2],
spacing: f32,
radius: f32,
color: Color32,
shapes: &mut Vec<Shape>,
) {
let mut position_on_segment = 0.0;
path.windows(2).for_each(|window| {
let (start, end) = (window[0], window[1]);
let vector = end - start;
let segment_length = vector.length();
while position_on_segment < segment_length {
let new_point = start + vector * (position_on_segment / segment_length);
shapes.push(Shape::circle_filled(new_point, radius, color));
position_on_segment += spacing;
}
position_on_segment -= segment_length;
});
}
/// Creates dashes from a line.
fn dashes_from_line(
path: &[Pos2],
stroke: Stroke,
dash_length: f32,
gap_length: f32,
shapes: &mut Vec<Shape>,
) {
let mut position_on_segment = 0.0;
let mut drawing_dash = false;
path.windows(2).for_each(|window| {
let (start, end) = (window[0], window[1]);
let vector = end - start;
let segment_length = vector.length();
let mut start_point = start;
while position_on_segment < segment_length {
let new_point = start + vector * (position_on_segment / segment_length);
if drawing_dash {
// This is the end point.
shapes.push(Shape::line_segment([start_point, new_point], stroke));
position_on_segment += gap_length;
} else {
// Start a new dash.
start_point = new_point;
position_on_segment += dash_length;
}
drawing_dash = !drawing_dash;
}
// If the segment ends and the dash is not finished, add the segment's end point.
if drawing_dash {
shapes.push(Shape::line_segment([start_point, end], stroke));
}
position_on_segment -= segment_length;
});
}
// ----------------------------------------------------------------------------
/// Information passed along with [`PaintCallback`] ([`Shape::Callback`]).
pub struct PaintCallbackInfo {
/// Viewport in points.
///
/// This specifies where on the screen to paint, and the borders of this
/// Rect is the [-1, +1] of the Normalized Device Coordinates.
///
/// Note than only a portion of this may be visible due to [`Self::clip_rect`].
pub viewport: Rect,
/// Clip rectangle in points.
pub clip_rect: Rect,
/// Pixels per point.
pub pixels_per_point: f32,
/// Full size of the screen, in pixels.
pub screen_size_px: [u32; 2],
}
pub struct ViewportInPixels {
/// Physical pixel offset for left side of the viewport.
pub left_px: f32,
/// Physical pixel offset for top side of the viewport.
pub top_px: f32,
/// Physical pixel offset for bottom side of the viewport.
///
/// This is what `glViewport`, `glScissor` etc expects for the y axis.
pub from_bottom_px: f32,
/// Viewport width in physical pixels.
pub width_px: f32,
/// Viewport width in physical pixels.
pub height_px: f32,
}
impl PaintCallbackInfo {
fn points_to_pixels(&self, rect: &Rect) -> ViewportInPixels {
ViewportInPixels {
left_px: rect.min.x * self.pixels_per_point,
top_px: rect.min.y * self.pixels_per_point,
from_bottom_px: self.screen_size_px[1] as f32 - rect.max.y * self.pixels_per_point,
width_px: rect.width() * self.pixels_per_point,
height_px: rect.height() * self.pixels_per_point,
}
}
/// The viewport rectangle. This is what you would use in e.g. `glViewport`.
pub fn viewport_in_pixels(&self) -> ViewportInPixels {
self.points_to_pixels(&self.viewport)
}
/// The "scissor" or "clip" rectangle. This is what you would use in e.g. `glScissor`.
pub fn clip_rect_in_pixels(&self) -> ViewportInPixels {
self.points_to_pixels(&self.clip_rect)
}
}
/// If you want to paint some 3D shapes inside an egui region, you can use this.
///
/// This is advanced usage, and is backend specific.
#[derive(Clone)]
pub struct PaintCallback {
/// Where to paint.
pub rect: Rect,
/// Paint something custom (e.g. 3D stuff).
///
/// The concrete value of `callback` depends on the rendering backend used. For instance, the
/// `glow` backend requires that callback be an `egui_glow::CallbackFn` while the `wgpu`
/// backend requires a `egui_wgpu::CallbackFn`.
///
/// If the type cannnot be downcast to the type expected by the current backend the callback
/// will not be drawn.
///
/// The rendering backend is responsible for first setting the active viewport to
/// [`Self::rect`].
///
/// The rendering backend is also responsible for restoring any state, such as the bound shader
/// program, vertex array, etc.
pub callback: Arc<dyn Any + Sync + Send>,
}
impl std::fmt::Debug for PaintCallback {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("CustomShape")
.field("rect", &self.rect)
.finish_non_exhaustive()
}
}
impl std::cmp::PartialEq for PaintCallback {
fn eq(&self, other: &Self) -> bool {
// As I understand it, the problem this clippy is trying to protect against
// can only happen if we do dynamic casts back and forth on the pointers, and we don't do that.
#[allow(clippy::vtable_address_comparisons)]
{
self.rect.eq(&other.rect) && Arc::ptr_eq(&self.callback, &other.callback)
}
}
}
impl From<PaintCallback> for Shape {
#[inline(always)]
fn from(shape: PaintCallback) -> Self {
Self::Callback(shape)
}
}