egui/egui/src/ui.rs

887 lines
32 KiB
Rust

#![allow(clippy::float_cmp)]
use std::{hash::Hash, sync::Arc};
use crate::{color::*, containers::*, layout::*, mutex::MutexGuard, paint::*, widgets::*, *};
/// Represents a region of the screen
/// with a type of layout (horizontal or vertical).
pub struct Ui {
/// ID of this ui.
/// Generated based on id of parent ui together with
/// another source of child identity (e.g. window title).
/// Acts like a namespace for child uis.
/// Hopefully unique.
id: Id,
painter: Painter,
/// This is the minimal size of the `Ui`.
/// When adding new widgets, this will generally expand.
///
/// Always finite.
///
/// The bounding box of all child widgets, but not necessarily a tight bounding box
/// since `Ui` can start with a non-zero min_rect size.
min_rect: Rect,
/// The maximum size of this `Ui`. This is a *soft max*
/// meaning new widgets will *try* not to expand beyond it,
/// but if they have to, they will.
///
/// Text will wrap at `max_rect.right()`.
/// Some widgets (like separator lines) will try to fill the full `max_rect` width of the ui.
///
/// `max_rect` will always be at least the size of `min_rect`.
///
/// If the `max_rect` size is zero, it is a signal that child widgets should be as small as possible.
/// If the `max_rect` size is infinite, it is a signal that child widgets should take up as much room as they want.
max_rect: Rect,
/// Override default style in this ui
style: Arc<Style>,
layout: Layout,
/// Where the next widget will be put.
/// Progresses along self.dir.
/// Initially set to rect.min
/// If something has already been added, this will point ot style.spacing.item_spacing beyond the latest child.
/// The cursor can thus be style.spacing.item_spacing pixels outside of the min_rect.
cursor: Pos2, // TODO: move into Layout?
/// How many children has been added to us?
/// This is only used to create a unique interact ID for some widgets
/// that work as long as no other widgets are added/removed while interacting.
child_count: usize,
}
impl Ui {
// ------------------------------------------------------------------------
// Creation:
pub fn new(
ctx: Arc<Context>,
layer_id: LayerId,
id: Id,
max_rect: Rect,
clip_rect: Rect,
) -> Self {
let style = ctx.style();
let layout = Layout::default();
let cursor = layout.initial_cursor(max_rect);
let min_size = Vec2::zero(); // TODO: From Style
let min_rect = layout.rect_from_cursor_size(cursor, min_size);
Ui {
id,
painter: Painter::new(ctx, layer_id, clip_rect),
min_rect,
max_rect,
style,
layout,
cursor,
child_count: 0,
}
}
pub fn child_ui(&mut self, max_rect: Rect, layout: Layout) -> Self {
let id = self.make_position_id(); // TODO: is this a good idea?
self.child_count += 1;
let cursor = layout.initial_cursor(max_rect);
let min_size = Vec2::zero(); // TODO: From Style
let min_rect = layout.rect_from_cursor_size(cursor, min_size);
Ui {
id,
painter: self.painter.clone(),
min_rect,
max_rect,
style: self.style.clone(),
layout,
cursor,
child_count: 0,
}
}
/// Empty `Ui` for use in tests.
pub fn __test() -> Self {
let mut ctx = Context::new();
ctx.begin_frame(Default::default());
let id = Id::new("__test");
let layer_id = LayerId::new(Order::Middle, id);
let rect = Rect::from_min_size(Pos2::new(0.0, 0.0), vec2(1000.0, 1000.0));
Self::new(ctx, layer_id, id, rect, rect)
}
// -------------------------------------------------
pub fn id(&self) -> Id {
self.id
}
/// Style options for this `Ui` and its children.
pub fn style(&self) -> &Style {
&self.style
}
/// Mutably borrow internal `Style`.
/// Changes apply to this `Ui` and its subsequent children.
pub fn style_mut(&mut self) -> &mut Style {
Arc::make_mut(&mut self.style) // clone-on-write
}
pub fn set_style(&mut self, style: impl Into<Arc<Style>>) {
self.style = style.into();
}
pub fn ctx(&self) -> &Arc<Context> {
self.painter.ctx()
}
/// Use this to paint stuff within this `Ui`.
pub fn painter(&self) -> &Painter {
&self.painter
}
pub fn layout(&self) -> &Layout {
&self.layout
}
/// Create a painter for a sub-region of this Ui.
///
/// The clip-rect of the returned `Painter` will be the intersection
/// of the given rectangle and the `clip_rect()` of this `Ui`.
pub fn painter_at(&self, rect: Rect) -> Painter {
self.painter().sub_region(rect)
}
/// Use this to paint stuff within this `Ui`.
pub fn layer_id(&self) -> LayerId {
self.painter().layer_id()
}
/// The `Input` of the `Context` associated with the `Ui`.
/// Equivalent to `.ctx().input()`.
pub fn input(&self) -> &InputState {
self.ctx().input()
}
/// The `Memory` of the `Context` associated with the `Ui`.
/// Equivalent to `.ctx().memory()`.
pub fn memory(&self) -> MutexGuard<'_, Memory> {
self.ctx().memory()
}
/// The `Output` of the `Context` associated with the `Ui`.
/// Equivalent to `.ctx().output()`.
pub fn output(&self) -> MutexGuard<'_, Output> {
self.ctx().output()
}
/// The `Fonts` of the `Context` associated with the `Ui`.
/// Equivalent to `.ctx().fonts()`.
pub fn fonts(&self) -> &Fonts {
self.ctx().fonts()
}
/// Screen-space rectangle for clipping what we paint in this ui.
/// This is used, for instance, to avoid painting outside a window that is smaller than its contents.
pub fn clip_rect(&self) -> Rect {
self.painter.clip_rect()
}
/// Screen-space rectangle for clipping what we paint in this ui.
/// This is used, for instance, to avoid painting outside a window that is smaller than its contents.
pub fn set_clip_rect(&mut self, clip_rect: Rect) {
self.painter.set_clip_rect(clip_rect);
}
}
// ------------------------------------------------------------------------
/// ## Sizes etc
impl Ui {
/// Where and how large the `Ui` is already.
/// All widgets that have been added ot this `Ui` fits within this rectangle.
///
/// No matter what, the final Ui will be at least this large.
///
/// This will grow as new widgets are added, but never shrink.
pub fn min_rect(&self) -> Rect {
self.min_rect
}
/// Size of content; same as `min_rect().size()`
pub fn min_size(&self) -> Vec2 {
self.min_rect.size()
}
/// New widgets will *try* to fit within this rectangle.
///
/// Text labels will wrap to fit within `max_rect`.
/// Separator lines will span the `max_rect`.
///
/// If a new widget doesn't fit within the `max_rect` then the
/// `Ui` will make room for it by expanding both `min_rect` and `max_rect`.
pub fn max_rect(&self) -> Rect {
self.max_rect
}
/// Used for animation, kind of hacky
pub(crate) fn force_set_min_rect(&mut self, min_rect: Rect) {
self.min_rect = min_rect;
}
/// This is like `max_rect()`, but will never be infinite.
/// If the desired rect is infinite ("be as big as you want")
/// this will be bounded by `min_rect` instead.
pub fn max_rect_finite(&self) -> Rect {
let mut result = self.max_rect;
if !result.min.x.is_finite() {
result.min.x = self.min_rect.min.x;
}
if !result.min.y.is_finite() {
result.min.y = self.min_rect.min.y;
}
if !result.max.x.is_finite() {
result.max.x = self.min_rect.max.x;
}
if !result.max.y.is_finite() {
result.max.y = self.min_rect.max.y;
}
result
}
// ------------------------------------------------------------------------
/// Set the maximum size of the ui.
/// You won't be able to shrink it below the current minimum size.
pub fn set_max_size(&mut self, size: Vec2) {
self.set_max_width(size.x);
self.set_max_height(size.y);
}
/// Set the maximum width of the ui.
/// You won't be able to shrink it below the current minimum size.
pub fn set_max_width(&mut self, width: f32) {
if self.layout.dir() == Direction::Horizontal && self.layout.is_reversed() {
debug_assert_eq!(self.min_rect.max.x, self.max_rect.max.x);
self.max_rect.min.x = self.max_rect.max.x - width.at_least(self.min_rect.width());
} else {
debug_assert_eq!(self.min_rect.min.x, self.max_rect.min.x);
self.max_rect.max.x = self.max_rect.min.x + width.at_least(self.min_rect.width());
}
}
/// Set the maximum height of the ui.
/// You won't be able to shrink it below the current minimum size.
pub fn set_max_height(&mut self, height: f32) {
if self.layout.dir() == Direction::Vertical && self.layout.is_reversed() {
debug_assert_eq!(self.min_rect.max.y, self.max_rect.max.y);
self.max_rect.min.y = self.max_rect.max.y - height.at_least(self.min_rect.height());
} else {
debug_assert_eq!(self.min_rect.min.y, self.max_rect.min.y);
self.max_rect.max.y = self.max_rect.min.y + height.at_least(self.min_rect.height());
}
}
// ------------------------------------------------------------------------
/// Set the minimum size of the ui.
/// This can't shrink the ui, only make it larger.
pub fn set_min_size(&mut self, size: Vec2) {
self.set_min_width(size.x);
self.set_min_height(size.y);
}
/// Set the minimum width of the ui.
/// This can't shrink the ui, only make it larger.
pub fn set_min_width(&mut self, width: f32) {
if self.layout.dir() == Direction::Horizontal && self.layout.is_reversed() {
debug_assert_eq!(self.min_rect.max.x, self.max_rect.max.x);
self.min_rect.min.x = self.min_rect.min.x.min(self.min_rect.max.x - width);
} else {
debug_assert_eq!(self.min_rect.min.x, self.max_rect.min.x);
self.min_rect.max.x = self.min_rect.max.x.max(self.min_rect.min.x + width);
}
self.max_rect = self.max_rect.union(self.min_rect);
}
/// Set the minimum height of the ui.
/// This can't shrink the ui, only make it larger.
pub fn set_min_height(&mut self, height: f32) {
if self.layout.dir() == Direction::Vertical && self.layout.is_reversed() {
debug_assert_eq!(self.min_rect.max.y, self.max_rect.max.y);
self.min_rect.min.y = self.min_rect.min.y.min(self.min_rect.max.y - height);
} else {
debug_assert_eq!(self.min_rect.min.y, self.max_rect.min.y);
self.min_rect.max.y = self.min_rect.max.y.max(self.min_rect.min.y + height);
}
self.max_rect = self.max_rect.union(self.min_rect);
}
// ------------------------------------------------------------------------
/// Helper: shrinks the max width to the current width,
/// so further widgets will try not to be wider than previous widgets.
/// Useful for normal vertical layouts.
pub fn shrink_width_to_current(&mut self) {
self.set_max_width(self.min_rect().width())
}
/// Helper: shrinks the max height to the current height,
/// so further widgets will try not to be wider than previous widgets.
pub fn shrink_height_to_current(&mut self) {
self.set_max_height(self.min_rect().height())
}
/// Expand the `min_rect` and `max_rect` of this ui to include a child at the given rect.
pub fn expand_to_include_rect(&mut self, rect: Rect) {
self.min_rect = self.min_rect.union(rect);
self.max_rect = self.max_rect.union(rect);
}
// ------------------------------------------------------------------------
// Layout related measures:
/// The available space at the moment, given the current cursor.
/// This how much more space we can take up without overflowing our parent.
/// Shrinks as widgets allocate space and the cursor moves.
/// A small rectangle should be interpreted as "as little as possible".
/// An infinite rectangle should be interpreted as "as much as you want".
/// In most layouts the next widget will be put in the top left corner of this `Rect`.
pub fn available(&self) -> Rect {
self.layout.available(self.cursor, self.max_rect())
}
/// This is like `available()`, but will never be infinite.
/// Use this for components that want to grow without bounds (but shouldn't).
/// In most layouts the next widget will be put in the top left corner of this `Rect`.
pub fn available_finite(&self) -> Rect {
self.layout.available(self.cursor, self.max_rect_finite())
}
}
/// # `Id` creation
impl Ui {
/// Will warn if the returned id is not guaranteed unique.
/// Use this to generate widget ids for widgets that have persistent state in Memory.
/// If the `id_source` is not unique within this ui
/// then an error will be printed at the current cursor position.
pub fn make_unique_child_id<IdSource>(&self, id_source: IdSource) -> Id
where
IdSource: Hash + std::fmt::Debug,
{
let id = self.id.with(&id_source);
// TODO: clip name clash error messages to clip rect
self.ctx().register_unique_id(id, id_source, self.cursor)
}
/// Ideally, all widgets should use this. TODO
/// Widgets can set an explicit id source (user picked, e.g. some loop index),
/// and a default id source (e.g. label).
/// If they fail to be unique, a positional id will be used instead.
pub fn make_unique_child_id_full(
&mut self,
explicit_id_source: Option<Id>,
default_id_source: Option<&str>,
) -> Id {
let id = if let Some(explicit_id_source) = explicit_id_source {
self.id.with(&explicit_id_source)
} else {
let id = self.id.with(default_id_source);
if self.ctx().is_unique_id(id) {
id
} else {
self.make_position_id()
}
};
self.ctx()
.register_unique_id(id, default_id_source.unwrap_or_default(), self.cursor)
}
/// Make an Id that is unique to this position.
/// Can be used for widgets that do NOT persist state in Memory
/// but you still need to interact with (e.g. buttons, sliders).
pub fn make_position_id(&self) -> Id {
self.id.with(self.child_count)
}
pub fn make_child_id(&self, id_seed: impl Hash) -> Id {
self.id.with(id_seed)
}
}
/// # Interaction
impl Ui {
pub fn interact(&self, rect: Rect, id: Id, sense: Sense) -> Response {
self.ctx()
.interact(self.layer_id(), self.clip_rect(), rect, Some(id), sense)
}
pub fn interact_hover(&self, rect: Rect) -> Response {
self.ctx().interact(
self.layer_id(),
self.clip_rect(),
rect,
None,
Sense::nothing(),
)
}
pub fn hovered(&self, rect: Rect) -> bool {
self.interact_hover(rect).hovered
}
pub fn contains_mouse(&self, rect: Rect) -> bool {
self.ctx()
.contains_mouse(self.layer_id(), self.clip_rect(), rect)
}
// ------------------------------------------------------------------------
// Stuff that moves the cursor, i.e. allocates space in this ui!
/// Advance the cursor (where the next widget is put) by this many points.
/// The direction is dependent on the layout.
/// This is useful for creating some extra space between widgets.
pub fn advance_cursor(&mut self, amount: f32) {
self.layout.advance_cursor(&mut self.cursor, amount);
}
/// Reserve this much space and move the cursor.
/// Returns where to put the widget.
///
/// ## How sizes are negotiated
/// Each widget should have a *minimum desired size* and a *desired size*.
/// When asking for space, ask AT LEAST for you minimum, and don't ask for more than you need.
/// If you want to fill the space, ask about `available().size()` and use that.
///
/// You may get MORE space than you asked for, for instance
/// for `Justified` aligned layouts, like in menus.
///
/// You may get LESS space than you asked for if the current layout won't fit what you asked for.
pub fn allocate_space(&mut self, desired_size: Vec2) -> Rect {
// For debug rendering
let too_wide = desired_size.x > self.available().width();
let too_high = desired_size.x > self.available().height();
let rect = self.reserve_space_impl(desired_size);
if self.style().visuals.debug_widget_rects {
self.painter.rect_stroke(rect, 0.0, (1.0, LIGHT_BLUE));
let color = color::srgba(200, 0, 0, 255);
let width = 2.5;
let paint_line_seg = |a, b| self.painter().line_segment([a, b], (width, color));
if too_wide {
paint_line_seg(rect.left_top(), rect.left_bottom());
paint_line_seg(rect.left_center(), rect.right_center());
paint_line_seg(rect.right_top(), rect.right_bottom());
}
if too_high {
paint_line_seg(rect.left_top(), rect.right_top());
paint_line_seg(rect.center_top(), rect.center_bottom());
paint_line_seg(rect.left_bottom(), rect.right_bottom());
}
}
rect
}
/// Reserve this much space and move the cursor.
/// Returns where to put the widget.
fn reserve_space_impl(&mut self, child_size: Vec2) -> Rect {
let available_size = self.available_finite().size();
let child_rect = self
.layout
.allocate_space(&mut self.cursor, available_size, child_size);
let item_spacing = self.style().spacing.item_spacing;
self.layout.advance_cursor2(&mut self.cursor, item_spacing);
self.expand_to_include_rect(child_rect);
self.child_count += 1;
child_rect
}
}
/// # Adding widgets
impl Ui {
pub fn add(&mut self, widget: impl Widget) -> Response {
widget.ui(self)
}
/// Shortcut for `add(Label::new(text))`
pub fn label(&mut self, label: impl Into<Label>) -> Response {
self.add(label.into())
}
/// Shortcut for `add(Label::new(text).heading())`
pub fn heading(&mut self, label: impl Into<Label>) -> Response {
self.add(label.into().heading())
}
/// Shortcut for `add(Label::new(text).monospace())`
pub fn monospace(&mut self, label: impl Into<Label>) -> Response {
self.add(label.into().monospace())
}
/// Shortcut for `add(Label::new(text).small())`
pub fn small(&mut self, label: impl Into<Label>) -> Response {
self.add(label.into().small())
}
/// Shortcut for `add(Hyperlink::new(url))`
pub fn hyperlink(&mut self, url: impl Into<String>) -> Response {
self.add(Hyperlink::new(url))
}
pub fn text_edit(&mut self, text: &mut String) -> Response {
self.add(TextEdit::new(text))
}
/// Shortcut for `add(Button::new(text))`
#[must_use = "You should check if the user clicked this with `if ui.button(...).clicked { ... } "]
pub fn button(&mut self, text: impl Into<String>) -> Response {
self.add(Button::new(text))
}
/// Show a checkbox.
pub fn checkbox(&mut self, checked: &mut bool, text: impl Into<String>) -> Response {
self.add(Checkbox::new(checked, text))
}
/// Show a radio button.
pub fn radio(&mut self, checked: bool, text: impl Into<String>) -> Response {
self.add(RadioButton::new(checked, text))
}
/// Show a radio button. It is selected if `*current_value == radio_value`.
/// If clicked, `radio_value` is assigned to `*current_value`;
pub fn radio_value<Value: PartialEq>(
&mut self,
current_value: &mut Value,
radio_value: Value,
text: impl Into<String>,
) -> Response {
let response = self.radio(*current_value == radio_value, text);
if response.clicked {
*current_value = radio_value;
}
response
}
/// Shortcut for `add(Separator::new())`
pub fn separator(&mut self) -> Response {
self.add(Separator::new())
}
/// Modify an angle. The given angle should be in radians, but is shown to the user in degrees.
/// The angle is NOT wrapped, so the user may select, for instance 720° = 2𝞃 = 4π
pub fn drag_angle(&mut self, radians: &mut f32) -> Response {
#![allow(clippy::float_cmp)]
let mut degrees = radians.to_degrees();
let response = self.add(DragValue::f32(&mut degrees).speed(1.0).suffix("°"));
// only touch `*radians` if we actually changed the degree value
if degrees != radians.to_degrees() {
*radians = degrees.to_radians();
}
response
}
/// Show an image here with the given size
pub fn image(&mut self, texture_id: TextureId, desired_size: Vec2) -> Response {
self.add(Image::new(texture_id, desired_size))
}
}
/// # Colors
impl Ui {
/// Shows a button with the given color.
/// If the user clicks the button, a full color picker is shown.
pub fn color_edit_button_srgba(&mut self, srgba: &mut Srgba) -> Response {
widgets::color_picker::color_edit_button_srgba(self, srgba)
}
/// Shows a button with the given color.
/// If the user clicks the button, a full color picker is shown.
pub fn color_edit_button_hsva(&mut self, hsva: &mut Hsva) -> Response {
widgets::color_picker::color_edit_button_hsva(self, hsva)
}
/// Shows a button with the given color.
/// If the user clicks the button, a full color picker is shown.
/// The given color is in `sRGBA` space with premultiplied alpha
pub fn color_edit_button_srgba_premultiplied(&mut self, srgba: &mut [u8; 4]) -> Response {
let mut color = Srgba(*srgba);
let response = self.color_edit_button_srgba(&mut color);
*srgba = color.0;
response
}
/// Shows a button with the given color.
/// If the user clicks the button, a full color picker is shown.
/// The given color is in `sRGBA` space without premultiplied alpha.
/// If unsure, what "premultiplied alpha" is, then this is probably the function you want to use.
pub fn color_edit_button_srgba_unmultiplied(&mut self, srgba: &mut [u8; 4]) -> Response {
let mut hsva = Hsva::from_srgba_unmultiplied(*srgba);
let response = self.color_edit_button_hsva(&mut hsva);
*srgba = hsva.to_srgba_unmultiplied();
response
}
/// Shows a button with the given color.
/// If the user clicks the button, a full color picker is shown.
/// The given color is in linear RGBA space with premultiplied alpha
pub fn color_edit_button_rgba_premultiplied(&mut self, rgba: &mut [f32; 4]) -> Response {
let mut hsva = Hsva::from_rgba_premultiplied(*rgba);
let response = self.color_edit_button_hsva(&mut hsva);
*rgba = hsva.to_rgba_premultiplied();
response
}
/// Shows a button with the given color.
/// If the user clicks the button, a full color picker is shown.
/// The given color is in linear RGBA space without premultiplied alpha.
/// If unsure, what "premultiplied alpha" is, then this is probably the function you want to use.
pub fn color_edit_button_rgba_unmultiplied(&mut self, rgba: &mut [f32; 4]) -> Response {
let mut hsva = Hsva::from_rgba_unmultiplied(*rgba);
let response = self.color_edit_button_hsva(&mut hsva);
*rgba = hsva.to_rgba_unmultiplied();
response
}
}
/// # Adding Containers / Sub-uis:
impl Ui {
/// Create a child ui. You can use this to temporarily change the Style of a sub-region, for instance.
pub fn wrap<R>(&mut self, add_contents: impl FnOnce(&mut Ui) -> R) -> (R, Response) {
let child_rect = self.available();
let mut child_ui = self.child_ui(child_rect, self.layout);
let ret = add_contents(&mut child_ui);
let size = child_ui.min_size();
let rect = self.allocate_space(size);
(ret, self.interact_hover(rect))
}
/// Redirect paint commands to another paint layer.
pub fn with_layer_id<R>(
&mut self,
layer_id: LayerId,
add_contents: impl FnOnce(&mut Self) -> R,
) -> (R, Response) {
self.wrap(|ui| {
ui.painter.set_layer_id(layer_id);
add_contents(ui)
})
}
/// Create a child ui at the current cursor.
/// `size` is the desired size.
/// Actual size may be much smaller if `available_size()` is not enough.
/// Set `size` to `Vec::infinity()` to get as much space as possible.
/// Just because you ask for a lot of space does not mean you have to use it!
/// After `add_contents` is called the contents of `min_size`
/// will decide how much space will be used in the parent ui.
pub fn add_custom_contents(&mut self, size: Vec2, add_contents: impl FnOnce(&mut Ui)) -> Rect {
let size = size.at_most(self.available().size());
let child_rect = self.layout.rect_from_cursor_size(self.cursor, size);
let mut child_ui = self.child_ui(child_rect, self.layout);
add_contents(&mut child_ui);
self.allocate_space(child_ui.min_size())
}
pub fn collapsing<R>(
&mut self,
heading: impl Into<String>,
add_contents: impl FnOnce(&mut Ui) -> R,
) -> CollapsingResponse<R> {
CollapsingHeader::new(heading).show(self, add_contents)
}
/// Create a child ui which is indented to the right
pub fn indent<R>(
&mut self,
id_source: impl Hash,
add_contents: impl FnOnce(&mut Ui) -> R,
) -> (R, Response) {
assert!(
self.layout().dir() == Direction::Vertical,
"You can only indent vertical layouts"
);
let indent = vec2(self.style().spacing.indent, 0.0);
let child_rect = Rect::from_min_max(self.cursor + indent, self.max_rect.right_bottom()); // TODO: wrong for reversed layouts
let mut child_ui = Ui {
id: self.id.with(id_source),
..self.child_ui(child_rect, self.layout)
};
let ret = add_contents(&mut child_ui);
let size = child_ui.min_size();
// draw a grey line on the left to mark the indented section
let line_start = child_rect.min - indent * 0.5;
let line_start = self.painter().round_pos_to_pixels(line_start);
let line_end = pos2(line_start.x, line_start.y + size.y - 2.0);
self.painter.line_segment(
[line_start, line_end],
self.style().visuals.widgets.noninteractive.bg_stroke,
);
let rect = self.allocate_space(indent + size);
(ret, self.interact_hover(rect))
}
pub fn left_column(&mut self, width: f32) -> Ui {
self.column(Align::Min, width)
}
pub fn centered_column(&mut self, width: f32) -> Ui {
self.column(Align::Center, width)
}
pub fn right_column(&mut self, width: f32) -> Ui {
self.column(Align::Max, width)
}
/// A column ui with a given width.
pub fn column(&mut self, column_position: Align, width: f32) -> Ui {
let x = match column_position {
Align::Min => 0.0,
Align::Center => self.available().width() / 2.0 - width / 2.0,
Align::Max => self.available().width() - width,
};
self.child_ui(
Rect::from_min_size(
self.cursor + vec2(x, 0.0),
vec2(width, self.available().height()),
),
self.layout,
)
}
/// Start a ui with horizontal layout.
/// After you have called this, the registers the contents as any other widget.
///
/// Elements will be centered on the Y axis, i.e.
/// adjusted up and down to lie in the center of the horizontal layout.
/// The initial height is `style.spacing.interact_size.y`.
/// Centering is almost always what you want if you are
/// planning to to mix widgets or just different types of text.
///
/// The returned `Response` will only have checked for mouse hover
/// but can be used for tooltips (`on_hover_text`).
/// It also contains the `Rect` used by the horizontal layout.
pub fn horizontal<R>(&mut self, add_contents: impl FnOnce(&mut Ui) -> R) -> (R, Response) {
let initial_size = vec2(
self.available().width(),
self.style().spacing.interact_size.y, // Assume there will be something interactive on the horizontal layout
);
let right_to_left =
(self.layout.dir(), self.layout.align()) == (Direction::Vertical, Some(Align::Max));
self.inner_layout(
Layout::horizontal(Align::Center).with_reversed(right_to_left),
initial_size,
add_contents,
)
}
/// Start a ui with vertical layout.
/// Widgets will be left-justified.
pub fn vertical<R>(&mut self, add_contents: impl FnOnce(&mut Ui) -> R) -> (R, Response) {
self.with_layout(Layout::vertical(Align::Min), add_contents)
}
fn inner_layout<R>(
&mut self,
layout: Layout,
initial_size: Vec2,
add_contents: impl FnOnce(&mut Self) -> R,
) -> (R, Response) {
let child_rect = self.layout.rect_from_cursor_size(self.cursor, initial_size);
let mut child_ui = self.child_ui(child_rect, layout);
let ret = add_contents(&mut child_ui);
let size = child_ui.min_size();
let rect = self.allocate_space(size);
(ret, self.interact_hover(rect))
}
pub fn with_layout<R>(
&mut self,
layout: Layout,
add_contents: impl FnOnce(&mut Self) -> R,
) -> (R, Response) {
let mut child_ui = self.child_ui(self.available(), layout);
let ret = add_contents(&mut child_ui);
let size = child_ui.min_size();
let rect = self.allocate_space(size);
(ret, self.interact_hover(rect))
}
/// Temporarily split split an Ui into several columns.
///
/// ```
/// # let mut ui = egui::Ui::__test();
/// ui.columns(2, |columns| {
/// columns[0].label("First column");
/// columns[1].label("Second column");
/// });
/// ```
pub fn columns<F, R>(&mut self, num_columns: usize, add_contents: F) -> R
where
F: FnOnce(&mut [Self]) -> R,
{
// TODO: ensure there is space
let spacing = self.style().spacing.item_spacing.x;
let total_spacing = spacing * (num_columns as f32 - 1.0);
let column_width = (self.available().width() - total_spacing) / (num_columns as f32);
let mut columns: Vec<Self> = (0..num_columns)
.map(|col_idx| {
let pos = self.cursor + vec2((col_idx as f32) * (column_width + spacing), 0.0);
let child_rect = Rect::from_min_max(
pos,
pos2(pos.x + column_width, self.max_rect.right_bottom().y),
);
Self {
id: self.make_child_id(&("column", col_idx)),
..self.child_ui(child_rect, self.layout)
}
})
.collect();
let result = add_contents(&mut columns[..]);
let mut sum_width = total_spacing;
for column in &columns {
sum_width += column.min_rect.width();
}
let mut max_height = 0.0;
for ui in columns {
let size = ui.min_size();
max_height = size.y.max(max_height);
}
let size = vec2(self.available().width().max(sum_width), max_height);
self.allocate_space(size);
result
}
}
// ----------------------------------------------------------------------------
/// ## Debug stuff
impl Ui {
/// Shows where the next widget is going to be placed
pub fn debug_paint_cursor(&self) {
self.layout.debug_paint_cursor(self.cursor, &self.painter);
}
}