
* Implement mint conversions Implement conversions for [mint](https://docs.rs/mint) (math interoperability standard types). - `impl {From, Into}<mint::Point2> for Pos2` - `impl {From, Into}<mint::Vector2> for Vec2` * Forward `mint` feature: egui -> epaint -> emath
446 lines
9.9 KiB
Rust
446 lines
9.9 KiB
Rust
use std::ops::{Add, AddAssign, Div, Mul, MulAssign, Neg, Sub, SubAssign};
|
|
|
|
/// A vector has a direction and length.
|
|
/// A [`Vec2`] is often used to represent a size.
|
|
///
|
|
/// emath represents positions using [`crate::Pos2`].
|
|
///
|
|
/// Normally the units are points (logical pixels).
|
|
#[derive(Clone, Copy, Default, PartialEq)]
|
|
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
|
|
pub struct Vec2 {
|
|
pub x: f32,
|
|
pub y: f32,
|
|
}
|
|
|
|
/// `vec2(x,y) == Vec2::new(x, y)`
|
|
#[inline(always)]
|
|
pub const fn vec2(x: f32, y: f32) -> Vec2 {
|
|
Vec2 { x, y }
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Compatibility and convenience conversions to and from [f32; 2]:
|
|
|
|
impl From<[f32; 2]> for Vec2 {
|
|
#[inline(always)]
|
|
fn from(v: [f32; 2]) -> Self {
|
|
Self { x: v[0], y: v[1] }
|
|
}
|
|
}
|
|
|
|
impl From<&[f32; 2]> for Vec2 {
|
|
#[inline(always)]
|
|
fn from(v: &[f32; 2]) -> Self {
|
|
Self { x: v[0], y: v[1] }
|
|
}
|
|
}
|
|
|
|
impl From<Vec2> for [f32; 2] {
|
|
#[inline(always)]
|
|
fn from(v: Vec2) -> Self {
|
|
[v.x, v.y]
|
|
}
|
|
}
|
|
|
|
impl From<&Vec2> for [f32; 2] {
|
|
#[inline(always)]
|
|
fn from(v: &Vec2) -> Self {
|
|
[v.x, v.y]
|
|
}
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Compatibility and convenience conversions to and from (f32, f32):
|
|
|
|
impl From<(f32, f32)> for Vec2 {
|
|
#[inline(always)]
|
|
fn from(v: (f32, f32)) -> Self {
|
|
Self { x: v.0, y: v.1 }
|
|
}
|
|
}
|
|
|
|
impl From<&(f32, f32)> for Vec2 {
|
|
#[inline(always)]
|
|
fn from(v: &(f32, f32)) -> Self {
|
|
Self { x: v.0, y: v.1 }
|
|
}
|
|
}
|
|
|
|
impl From<Vec2> for (f32, f32) {
|
|
#[inline(always)]
|
|
fn from(v: Vec2) -> Self {
|
|
(v.x, v.y)
|
|
}
|
|
}
|
|
|
|
impl From<&Vec2> for (f32, f32) {
|
|
#[inline(always)]
|
|
fn from(v: &Vec2) -> Self {
|
|
(v.x, v.y)
|
|
}
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Mint compatibility and convenience conversions
|
|
|
|
#[cfg(feature = "mint")]
|
|
impl From<mint::Vector2<f32>> for Vec2 {
|
|
fn from(v: mint::Vector2<f32>) -> Self {
|
|
Self::new(v.x, v.y)
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "mint")]
|
|
impl From<Vec2> for mint::Vector2<f32> {
|
|
fn from(v: Vec2) -> Self {
|
|
Self { x: v.x, y: v.y }
|
|
}
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
impl Vec2 {
|
|
pub const X: Vec2 = Vec2 { x: 1.0, y: 0.0 };
|
|
pub const Y: Vec2 = Vec2 { x: 0.0, y: 1.0 };
|
|
|
|
pub const RIGHT: Vec2 = Vec2 { x: 1.0, y: 0.0 };
|
|
pub const LEFT: Vec2 = Vec2 { x: -1.0, y: 0.0 };
|
|
pub const UP: Vec2 = Vec2 { x: 0.0, y: -1.0 };
|
|
pub const DOWN: Vec2 = Vec2 { x: 0.0, y: 1.0 };
|
|
|
|
pub const ZERO: Self = Self { x: 0.0, y: 0.0 };
|
|
pub const INFINITY: Self = Self::splat(f32::INFINITY);
|
|
|
|
#[deprecated = "Use Vec2::ZERO instead"]
|
|
pub fn zero() -> Self {
|
|
Self::ZERO
|
|
}
|
|
|
|
#[deprecated = "Use Vec2::INFINITY instead"]
|
|
pub fn infinity() -> Self {
|
|
Self::INFINITY
|
|
}
|
|
|
|
#[inline(always)]
|
|
pub const fn new(x: f32, y: f32) -> Self {
|
|
Self { x, y }
|
|
}
|
|
|
|
/// Set both `x` and `y` to the same value.
|
|
#[inline(always)]
|
|
pub const fn splat(v: f32) -> Self {
|
|
Self { x: v, y: v }
|
|
}
|
|
|
|
/// Safe normalize: returns zero if input is zero.
|
|
#[must_use]
|
|
#[inline(always)]
|
|
pub fn normalized(self) -> Self {
|
|
let len = self.length();
|
|
if len <= 0.0 {
|
|
self
|
|
} else {
|
|
self / len
|
|
}
|
|
}
|
|
|
|
/// Rotates the vector by 90°, i.e positive X to positive Y
|
|
/// (clockwise in egui coordinates).
|
|
#[inline(always)]
|
|
pub fn rot90(self) -> Self {
|
|
vec2(self.y, -self.x)
|
|
}
|
|
|
|
#[inline(always)]
|
|
pub fn length(self) -> f32 {
|
|
self.x.hypot(self.y)
|
|
}
|
|
|
|
#[inline(always)]
|
|
pub fn length_sq(self) -> f32 {
|
|
self.x * self.x + self.y * self.y
|
|
}
|
|
|
|
/// Measures the angle of the vector.
|
|
///
|
|
/// ```
|
|
/// # use emath::Vec2;
|
|
/// use std::f32::consts::TAU;
|
|
///
|
|
/// assert_eq!(Vec2::ZERO.angle(), 0.0);
|
|
/// assert_eq!(Vec2::angled(0.0).angle(), 0.0);
|
|
/// assert_eq!(Vec2::angled(1.0).angle(), 1.0);
|
|
/// assert_eq!(Vec2::X.angle(), 0.0);
|
|
/// assert_eq!(Vec2::Y.angle(), 0.25 * TAU);
|
|
///
|
|
/// assert_eq!(Vec2::RIGHT.angle(), 0.0);
|
|
/// assert_eq!(Vec2::DOWN.angle(), 0.25 * TAU);
|
|
/// assert_eq!(Vec2::UP.angle(), -0.25 * TAU);
|
|
/// ```
|
|
#[inline(always)]
|
|
pub fn angle(self) -> f32 {
|
|
self.y.atan2(self.x)
|
|
}
|
|
|
|
/// Create a unit vector with the given angle (in radians).
|
|
/// * An angle of zero gives the unit X axis.
|
|
/// * An angle of 𝞃/4 = 90° gives the unit Y axis.
|
|
///
|
|
/// ```
|
|
/// # use emath::Vec2;
|
|
/// use std::f32::consts::TAU;
|
|
///
|
|
/// assert_eq!(Vec2::angled(0.0), Vec2::X);
|
|
/// assert!((Vec2::angled(0.25 * TAU) - Vec2::Y).length() < 1e-5);
|
|
/// ```
|
|
#[inline(always)]
|
|
pub fn angled(angle: f32) -> Self {
|
|
vec2(angle.cos(), angle.sin())
|
|
}
|
|
|
|
#[must_use]
|
|
#[inline(always)]
|
|
pub fn floor(self) -> Self {
|
|
vec2(self.x.floor(), self.y.floor())
|
|
}
|
|
|
|
#[must_use]
|
|
#[inline(always)]
|
|
pub fn round(self) -> Self {
|
|
vec2(self.x.round(), self.y.round())
|
|
}
|
|
|
|
#[must_use]
|
|
#[inline(always)]
|
|
pub fn ceil(self) -> Self {
|
|
vec2(self.x.ceil(), self.y.ceil())
|
|
}
|
|
|
|
/// True if all members are also finite.
|
|
#[inline(always)]
|
|
pub fn is_finite(self) -> bool {
|
|
self.x.is_finite() && self.y.is_finite()
|
|
}
|
|
|
|
/// True if any member is NaN.
|
|
#[inline(always)]
|
|
pub fn any_nan(self) -> bool {
|
|
self.x.is_nan() || self.y.is_nan()
|
|
}
|
|
|
|
#[must_use]
|
|
#[inline]
|
|
pub fn min(self, other: Self) -> Self {
|
|
vec2(self.x.min(other.x), self.y.min(other.y))
|
|
}
|
|
|
|
#[must_use]
|
|
#[inline]
|
|
pub fn max(self, other: Self) -> Self {
|
|
vec2(self.x.max(other.x), self.y.max(other.y))
|
|
}
|
|
|
|
/// Returns the minimum of `self.x` and `self.y`.
|
|
#[must_use]
|
|
#[inline(always)]
|
|
pub fn min_elem(self) -> f32 {
|
|
self.x.min(self.y)
|
|
}
|
|
|
|
/// Returns the maximum of `self.x` and `self.y`.
|
|
#[inline(always)]
|
|
#[must_use]
|
|
pub fn max_elem(self) -> f32 {
|
|
self.x.max(self.y)
|
|
}
|
|
|
|
#[must_use]
|
|
#[inline]
|
|
pub fn clamp(self, min: Self, max: Self) -> Self {
|
|
Self {
|
|
x: self.x.clamp(min.x, max.x),
|
|
y: self.y.clamp(min.y, max.y),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl std::ops::Index<usize> for Vec2 {
|
|
type Output = f32;
|
|
|
|
#[inline(always)]
|
|
fn index(&self, index: usize) -> &f32 {
|
|
match index {
|
|
0 => &self.x,
|
|
1 => &self.y,
|
|
_ => panic!("Vec2 index out of bounds: {}", index),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl std::ops::IndexMut<usize> for Vec2 {
|
|
#[inline(always)]
|
|
fn index_mut(&mut self, index: usize) -> &mut f32 {
|
|
match index {
|
|
0 => &mut self.x,
|
|
1 => &mut self.y,
|
|
_ => panic!("Vec2 index out of bounds: {}", index),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Eq for Vec2 {}
|
|
|
|
impl Neg for Vec2 {
|
|
type Output = Vec2;
|
|
|
|
#[inline(always)]
|
|
fn neg(self) -> Vec2 {
|
|
vec2(-self.x, -self.y)
|
|
}
|
|
}
|
|
|
|
impl AddAssign for Vec2 {
|
|
#[inline(always)]
|
|
fn add_assign(&mut self, rhs: Vec2) {
|
|
*self = Vec2 {
|
|
x: self.x + rhs.x,
|
|
y: self.y + rhs.y,
|
|
};
|
|
}
|
|
}
|
|
|
|
impl SubAssign for Vec2 {
|
|
#[inline(always)]
|
|
fn sub_assign(&mut self, rhs: Vec2) {
|
|
*self = Vec2 {
|
|
x: self.x - rhs.x,
|
|
y: self.y - rhs.y,
|
|
};
|
|
}
|
|
}
|
|
|
|
impl Add for Vec2 {
|
|
type Output = Vec2;
|
|
|
|
#[inline(always)]
|
|
fn add(self, rhs: Vec2) -> Vec2 {
|
|
Vec2 {
|
|
x: self.x + rhs.x,
|
|
y: self.y + rhs.y,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Sub for Vec2 {
|
|
type Output = Vec2;
|
|
|
|
#[inline(always)]
|
|
fn sub(self, rhs: Vec2) -> Vec2 {
|
|
Vec2 {
|
|
x: self.x - rhs.x,
|
|
y: self.y - rhs.y,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Element-wise multiplication
|
|
impl Mul<Vec2> for Vec2 {
|
|
type Output = Vec2;
|
|
|
|
#[inline(always)]
|
|
fn mul(self, vec: Vec2) -> Vec2 {
|
|
Vec2 {
|
|
x: self.x * vec.x,
|
|
y: self.y * vec.y,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Element-wise division
|
|
impl Div<Vec2> for Vec2 {
|
|
type Output = Vec2;
|
|
|
|
#[inline(always)]
|
|
fn div(self, rhs: Vec2) -> Vec2 {
|
|
Vec2 {
|
|
x: self.x / rhs.x,
|
|
y: self.y / rhs.y,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl MulAssign<f32> for Vec2 {
|
|
#[inline(always)]
|
|
fn mul_assign(&mut self, rhs: f32) {
|
|
self.x *= rhs;
|
|
self.y *= rhs;
|
|
}
|
|
}
|
|
|
|
impl Mul<f32> for Vec2 {
|
|
type Output = Vec2;
|
|
|
|
#[inline(always)]
|
|
fn mul(self, factor: f32) -> Vec2 {
|
|
Vec2 {
|
|
x: self.x * factor,
|
|
y: self.y * factor,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Mul<Vec2> for f32 {
|
|
type Output = Vec2;
|
|
|
|
#[inline(always)]
|
|
fn mul(self, vec: Vec2) -> Vec2 {
|
|
Vec2 {
|
|
x: self * vec.x,
|
|
y: self * vec.y,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Div<f32> for Vec2 {
|
|
type Output = Vec2;
|
|
|
|
#[inline(always)]
|
|
fn div(self, factor: f32) -> Vec2 {
|
|
Vec2 {
|
|
x: self.x / factor,
|
|
y: self.y / factor,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl std::fmt::Debug for Vec2 {
|
|
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
|
write!(f, "[{:.1} {:.1}]", self.x, self.y)
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_vec2() {
|
|
#![allow(clippy::float_cmp)]
|
|
|
|
macro_rules! almost_eq {
|
|
($left:expr, $right:expr) => {
|
|
let left = $left;
|
|
let right = $right;
|
|
assert!((left - right).abs() < 1e-6, "{} != {}", left, right);
|
|
};
|
|
}
|
|
use std::f32::consts::TAU;
|
|
|
|
assert_eq!(Vec2::ZERO.angle(), 0.0);
|
|
assert_eq!(Vec2::angled(0.0).angle(), 0.0);
|
|
assert_eq!(Vec2::angled(1.0).angle(), 1.0);
|
|
assert_eq!(Vec2::X.angle(), 0.0);
|
|
assert_eq!(Vec2::Y.angle(), 0.25 * TAU);
|
|
|
|
assert_eq!(Vec2::RIGHT.angle(), 0.0);
|
|
assert_eq!(Vec2::DOWN.angle(), 0.25 * TAU);
|
|
almost_eq!(Vec2::LEFT.angle(), 0.50 * TAU);
|
|
assert_eq!(Vec2::UP.angle(), -0.25 * TAU);
|
|
}
|