egui/crates/epaint/src/bezier.rs
2022-08-20 10:41:49 +02:00

1124 lines
38 KiB
Rust

#![allow(clippy::many_single_char_names)]
use std::ops::Range;
use crate::{shape::Shape, Color32, PathShape, Stroke};
use emath::*;
// ----------------------------------------------------------------------------
/// A cubic [Bézier Curve](https://en.wikipedia.org/wiki/B%C3%A9zier_curve).
///
/// See also [`QuadraticBezierShape`].
#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct CubicBezierShape {
/// The first point is the starting point and the last one is the ending point of the curve.
/// The middle points are the control points.
pub points: [Pos2; 4],
pub closed: bool,
pub fill: Color32,
pub stroke: Stroke,
}
impl CubicBezierShape {
/// Creates a cubic Bézier curve based on 4 points and stroke.
///
/// The first point is the starting point and the last one is the ending point of the curve.
/// The middle points are the control points.
pub fn from_points_stroke(
points: [Pos2; 4],
closed: bool,
fill: Color32,
stroke: impl Into<Stroke>,
) -> Self {
Self {
points,
closed,
fill,
stroke: stroke.into(),
}
}
/// Transform the curve with the given transform.
pub fn transform(&self, transform: &RectTransform) -> Self {
let mut points = [Pos2::default(); 4];
for (i, origin_point) in self.points.iter().enumerate() {
points[i] = transform * *origin_point;
}
CubicBezierShape {
points,
closed: self.closed,
fill: self.fill,
stroke: self.stroke,
}
}
/// Convert the cubic Bézier curve to one or two [`PathShape`]'s.
/// When the curve is closed and it has to intersect with the base line, it will be converted into two shapes.
/// Otherwise, it will be converted into one shape.
/// The `tolerance` will be used to control the max distance between the curve and the base line.
/// The `epsilon` is used when comparing two floats.
pub fn to_path_shapes(&self, tolerance: Option<f32>, epsilon: Option<f32>) -> Vec<PathShape> {
let mut pathshapes = Vec::new();
let mut points_vec = self.flatten_closed(tolerance, epsilon);
for points in points_vec.drain(..) {
let pathshape = PathShape {
points,
closed: self.closed,
fill: self.fill,
stroke: self.stroke,
};
pathshapes.push(pathshape);
}
pathshapes
}
/// The visual bounding rectangle (includes stroke width)
pub fn visual_bounding_rect(&self) -> Rect {
if self.fill == Color32::TRANSPARENT && self.stroke.is_empty() {
Rect::NOTHING
} else {
self.logical_bounding_rect().expand(self.stroke.width / 2.0)
}
}
/// Logical bounding rectangle (ignoring stroke width)
pub fn logical_bounding_rect(&self) -> Rect {
//temporary solution
let (mut min_x, mut max_x) = if self.points[0].x < self.points[3].x {
(self.points[0].x, self.points[3].x)
} else {
(self.points[3].x, self.points[0].x)
};
let (mut min_y, mut max_y) = if self.points[0].y < self.points[3].y {
(self.points[0].y, self.points[3].y)
} else {
(self.points[3].y, self.points[0].y)
};
// find the inflection points and get the x value
cubic_for_each_local_extremum(
self.points[0].x,
self.points[1].x,
self.points[2].x,
self.points[3].x,
&mut |t| {
let x = self.sample(t).x;
if x < min_x {
min_x = x;
}
if x > max_x {
max_x = x;
}
},
);
// find the inflection points and get the y value
cubic_for_each_local_extremum(
self.points[0].y,
self.points[1].y,
self.points[2].y,
self.points[3].y,
&mut |t| {
let y = self.sample(t).y;
if y < min_y {
min_y = y;
}
if y > max_y {
max_y = y;
}
},
);
Rect {
min: Pos2 { x: min_x, y: min_y },
max: Pos2 { x: max_x, y: max_y },
}
}
/// split the original cubic curve into a new one within a range.
pub fn split_range(&self, t_range: Range<f32>) -> Self {
crate::epaint_assert!(
t_range.start >= 0.0 && t_range.end <= 1.0 && t_range.start <= t_range.end,
"range should be in [0.0,1.0]"
);
let from = self.sample(t_range.start);
let to = self.sample(t_range.end);
let d_from = self.points[1] - self.points[0].to_vec2();
let d_ctrl = self.points[2] - self.points[1].to_vec2();
let d_to = self.points[3] - self.points[2].to_vec2();
let q = QuadraticBezierShape {
points: [d_from, d_ctrl, d_to],
closed: self.closed,
fill: self.fill,
stroke: self.stroke,
};
let delta_t = t_range.end - t_range.start;
let q_start = q.sample(t_range.start);
let q_end = q.sample(t_range.end);
let ctrl1 = from + q_start.to_vec2() * delta_t;
let ctrl2 = to - q_end.to_vec2() * delta_t;
CubicBezierShape {
points: [from, ctrl1, ctrl2, to],
closed: self.closed,
fill: self.fill,
stroke: self.stroke,
}
}
// copied from lyon::geom::flattern_cubic.rs
// Computes the number of quadratic bézier segments to approximate a cubic one.
// Derived by Raph Levien from section 10.6 of Sedeberg's CAGD notes
// https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1000&context=facpub#section.10.6
// and the error metric from the caffein owl blog post http://caffeineowl.com/graphics/2d/vectorial/cubic2quad01.html
pub fn num_quadratics(&self, tolerance: f32) -> u32 {
crate::epaint_assert!(tolerance > 0.0, "the tolerance should be positive");
let x =
self.points[0].x - 3.0 * self.points[1].x + 3.0 * self.points[2].x - self.points[3].x;
let y =
self.points[0].y - 3.0 * self.points[1].y + 3.0 * self.points[2].y - self.points[3].y;
let err = x * x + y * y;
(err / (432.0 * tolerance * tolerance))
.powf(1.0 / 6.0)
.ceil()
.max(1.0) as u32
}
/// Find out the t value for the point where the curve is intersected with the base line.
/// The base line is the line from P0 to P3.
/// If the curve only has two intersection points with the base line, they should be 0.0 and 1.0.
/// In this case, the "fill" will be simple since the curve is a convex line.
/// If the curve has more than two intersection points with the base line, the "fill" will be a problem.
/// We need to find out where is the 3rd t value (0<t<1)
/// And the original cubic curve will be split into two curves (0.0..t and t..1.0).
/// B(t) = (1-t)^3*P0 + 3*t*(1-t)^2*P1 + 3*t^2*(1-t)*P2 + t^3*P3
/// or B(t) = (P3 - 3*P2 + 3*P1 - P0)*t^3 + (3*P2 - 6*P1 + 3*P0)*t^2 + (3*P1 - 3*P0)*t + P0
/// this B(t) should be on the line between P0 and P3. Therefore:
/// (B.x - P0.x)/(P3.x - P0.x) = (B.y - P0.y)/(P3.y - P0.y), or:
/// B.x * (P3.y - P0.y) - B.y * (P3.x - P0.x) + P0.x * (P0.y - P3.y) + P0.y * (P3.x - P0.x) = 0
/// B.x = (P3.x - 3 * P2.x + 3 * P1.x - P0.x) * t^3 + (3 * P2.x - 6 * P1.x + 3 * P0.x) * t^2 + (3 * P1.x - 3 * P0.x) * t + P0.x
/// B.y = (P3.y - 3 * P2.y + 3 * P1.y - P0.y) * t^3 + (3 * P2.y - 6 * P1.y + 3 * P0.y) * t^2 + (3 * P1.y - 3 * P0.y) * t + P0.y
/// Combine the above three equations and iliminate B.x and B.y, we get:
/// t^3 * ( (P3.x - 3*P2.x + 3*P1.x - P0.x) * (P3.y - P0.y) - (P3.y - 3*P2.y + 3*P1.y - P0.y) * (P3.x - P0.x))
/// + t^2 * ( (3 * P2.x - 6 * P1.x + 3 * P0.x) * (P3.y - P0.y) - (3 * P2.y - 6 * P1.y + 3 * P0.y) * (P3.x - P0.x))
/// + t^1 * ( (3 * P1.x - 3 * P0.x) * (P3.y - P0.y) - (3 * P1.y - 3 * P0.y) * (P3.x - P0.x))
/// + (P0.x * (P3.y - P0.y) - P0.y * (P3.x - P0.x)) + P0.x * (P0.y - P3.y) + P0.y * (P3.x - P0.x)
/// = 0
/// or a * t^3 + b * t^2 + c * t + d = 0
///
/// let x = t - b / (3 * a), then we have:
/// x^3 + p * x + q = 0, where:
/// p = (3.0 * a * c - b^2) / (3.0 * a^2)
/// q = (2.0 * b^3 - 9.0 * a * b * c + 27.0 * a^2 * d) / (27.0 * a^3)
///
/// when p > 0, there will be one real root, two complex roots
/// when p = 0, there will be two real roots, when p=q=0, there will be three real roots but all 0.
/// when p < 0, there will be three unique real roots. this is what we need. (x1, x2, x3)
/// t = x + b / (3 * a), then we have: t1, t2, t3.
/// the one between 0.0 and 1.0 is what we need.
/// <`https://baike.baidu.com/item/%E4%B8%80%E5%85%83%E4%B8%89%E6%AC%A1%E6%96%B9%E7%A8%8B/8388473 /`>
///
pub fn find_cross_t(&self, epsilon: f32) -> Option<f32> {
let p0 = self.points[0];
let p1 = self.points[1];
let p2 = self.points[2];
let p3 = self.points[3];
let a = (p3.x - 3.0 * p2.x + 3.0 * p1.x - p0.x) * (p3.y - p0.y)
- (p3.y - 3.0 * p2.y + 3.0 * p1.y - p0.y) * (p3.x - p0.x);
let b = (3.0 * p2.x - 6.0 * p1.x + 3.0 * p0.x) * (p3.y - p0.y)
- (3.0 * p2.y - 6.0 * p1.y + 3.0 * p0.y) * (p3.x - p0.x);
let c =
(3.0 * p1.x - 3.0 * p0.x) * (p3.y - p0.y) - (3.0 * p1.y - 3.0 * p0.y) * (p3.x - p0.x);
let d = p0.x * (p3.y - p0.y) - p0.y * (p3.x - p0.x)
+ p0.x * (p0.y - p3.y)
+ p0.y * (p3.x - p0.x);
let h = -b / (3.0 * a);
let p = (3.0 * a * c - b * b) / (3.0 * a * a);
let q = (2.0 * b * b * b - 9.0 * a * b * c + 27.0 * a * a * d) / (27.0 * a * a * a);
if p > 0.0 {
return None;
}
let r = (-1.0 * (p / 3.0).powi(3)).sqrt();
let theta = (-1.0 * q / (2.0 * r)).acos() / 3.0;
let t1 = 2.0 * r.cbrt() * theta.cos() + h;
let t2 = 2.0 * r.cbrt() * (theta + 120.0 * std::f32::consts::PI / 180.0).cos() + h;
let t3 = 2.0 * r.cbrt() * (theta + 240.0 * std::f32::consts::PI / 180.0).cos() + h;
if t1 > epsilon && t1 < 1.0 - epsilon {
return Some(t1);
}
if t2 > epsilon && t2 < 1.0 - epsilon {
return Some(t2);
}
if t3 > epsilon && t3 < 1.0 - epsilon {
return Some(t3);
}
None
}
/// Calculate the point (x,y) at t based on the cubic Bézier curve equation.
/// t is in [0.0,1.0]
/// [Bézier Curve](https://en.wikipedia.org/wiki/B%C3%A9zier_curve#Cubic_B.C3.A9zier_curves)
///
pub fn sample(&self, t: f32) -> Pos2 {
crate::epaint_assert!(
t >= 0.0 && t <= 1.0,
"the sample value should be in [0.0,1.0]"
);
let h = 1.0 - t;
let a = t * t * t;
let b = 3.0 * t * t * h;
let c = 3.0 * t * h * h;
let d = h * h * h;
let result = self.points[3].to_vec2() * a
+ self.points[2].to_vec2() * b
+ self.points[1].to_vec2() * c
+ self.points[0].to_vec2() * d;
result.to_pos2()
}
/// find a set of points that approximate the cubic Bézier curve.
/// the number of points is determined by the tolerance.
/// the points may not be evenly distributed in the range [0.0,1.0] (t value)
pub fn flatten(&self, tolerance: Option<f32>) -> Vec<Pos2> {
let tolerance = tolerance.unwrap_or((self.points[0].x - self.points[3].x).abs() * 0.001);
let mut result = vec![self.points[0]];
self.for_each_flattened_with_t(tolerance, &mut |p, _t| {
result.push(p);
});
result
}
/// find a set of points that approximate the cubic Bézier curve.
/// the number of points is determined by the tolerance.
/// the points may not be evenly distributed in the range [0.0,1.0] (t value)
/// this api will check whether the curve will cross the base line or not when closed = true.
/// The result will be a vec of vec of Pos2. it will store two closed aren in different vec.
/// The epsilon is used to compare a float value.
pub fn flatten_closed(&self, tolerance: Option<f32>, epsilon: Option<f32>) -> Vec<Vec<Pos2>> {
let tolerance = tolerance.unwrap_or((self.points[0].x - self.points[3].x).abs() * 0.001);
let epsilon = epsilon.unwrap_or(1.0e-5);
let mut result = Vec::new();
let mut first_half = Vec::new();
let mut second_half = Vec::new();
let mut flipped = false;
first_half.push(self.points[0]);
let cross = self.find_cross_t(epsilon);
match cross {
Some(cross) => {
if self.closed {
self.for_each_flattened_with_t(tolerance, &mut |p, t| {
if t < cross {
first_half.push(p);
} else {
if !flipped {
// when just crossed the base line, flip the order of the points
// add the cross point to the first half as the last point
// and add the cross point to the second half as the first point
flipped = true;
let cross_point = self.sample(cross);
first_half.push(cross_point);
second_half.push(cross_point);
}
second_half.push(p);
}
});
} else {
self.for_each_flattened_with_t(tolerance, &mut |p, _t| {
first_half.push(p);
});
}
}
None => {
self.for_each_flattened_with_t(tolerance, &mut |p, _t| {
first_half.push(p);
});
}
}
result.push(first_half);
if !second_half.is_empty() {
result.push(second_half);
}
result
}
// from lyon_geom::cubic_bezier.rs
/// Iterates through the curve invoking a callback at each point.
pub fn for_each_flattened_with_t<F: FnMut(Pos2, f32)>(&self, tolerance: f32, callback: &mut F) {
flatten_cubic_bezier_with_t(self, tolerance, callback);
}
}
impl From<CubicBezierShape> for Shape {
#[inline(always)]
fn from(shape: CubicBezierShape) -> Self {
Self::CubicBezier(shape)
}
}
// ----------------------------------------------------------------------------
/// A quadratic [Bézier Curve](https://en.wikipedia.org/wiki/B%C3%A9zier_curve).
///
/// See also [`CubicBezierShape`].
#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct QuadraticBezierShape {
/// The first point is the starting point and the last one is the ending point of the curve.
/// The middle point is the control points.
pub points: [Pos2; 3],
pub closed: bool,
pub fill: Color32,
pub stroke: Stroke,
}
impl QuadraticBezierShape {
/// Create a new quadratic Bézier shape based on the 3 points and stroke.
///
/// The first point is the starting point and the last one is the ending point of the curve.
/// The middle point is the control points.
/// The points should be in the order [start, control, end]
pub fn from_points_stroke(
points: [Pos2; 3],
closed: bool,
fill: Color32,
stroke: impl Into<Stroke>,
) -> Self {
QuadraticBezierShape {
points,
closed,
fill,
stroke: stroke.into(),
}
}
/// Transform the curve with the given transform.
pub fn transform(&self, transform: &RectTransform) -> Self {
let mut points = [Pos2::default(); 3];
for (i, origin_point) in self.points.iter().enumerate() {
points[i] = transform * *origin_point;
}
QuadraticBezierShape {
points,
closed: self.closed,
fill: self.fill,
stroke: self.stroke,
}
}
/// Convert the quadratic Bézier curve to one [`PathShape`].
/// The `tolerance` will be used to control the max distance between the curve and the base line.
pub fn to_path_shape(&self, tolerance: Option<f32>) -> PathShape {
let points = self.flatten(tolerance);
PathShape {
points,
closed: self.closed,
fill: self.fill,
stroke: self.stroke,
}
}
/// The visual bounding rectangle (includes stroke width)
pub fn visual_bounding_rect(&self) -> Rect {
if self.fill == Color32::TRANSPARENT && self.stroke.is_empty() {
Rect::NOTHING
} else {
self.logical_bounding_rect().expand(self.stroke.width / 2.0)
}
}
/// Logical bounding rectangle (ignoring stroke width)
pub fn logical_bounding_rect(&self) -> Rect {
let (mut min_x, mut max_x) = if self.points[0].x < self.points[2].x {
(self.points[0].x, self.points[2].x)
} else {
(self.points[2].x, self.points[0].x)
};
let (mut min_y, mut max_y) = if self.points[0].y < self.points[2].y {
(self.points[0].y, self.points[2].y)
} else {
(self.points[2].y, self.points[0].y)
};
quadratic_for_each_local_extremum(
self.points[0].x,
self.points[1].x,
self.points[2].x,
&mut |t| {
let x = self.sample(t).x;
if x < min_x {
min_x = x;
}
if x > max_x {
max_x = x;
}
},
);
quadratic_for_each_local_extremum(
self.points[0].y,
self.points[1].y,
self.points[2].y,
&mut |t| {
let y = self.sample(t).y;
if y < min_y {
min_y = y;
}
if y > max_y {
max_y = y;
}
},
);
Rect {
min: Pos2 { x: min_x, y: min_y },
max: Pos2 { x: max_x, y: max_y },
}
}
/// Calculate the point (x,y) at t based on the quadratic Bézier curve equation.
/// t is in [0.0,1.0]
/// [Bézier Curve](https://en.wikipedia.org/wiki/B%C3%A9zier_curve#Quadratic_B.C3.A9zier_curves)
///
pub fn sample(&self, t: f32) -> Pos2 {
crate::epaint_assert!(
t >= 0.0 && t <= 1.0,
"the sample value should be in [0.0,1.0]"
);
let h = 1.0 - t;
let a = t * t;
let b = 2.0 * t * h;
let c = h * h;
let result = self.points[2].to_vec2() * a
+ self.points[1].to_vec2() * b
+ self.points[0].to_vec2() * c;
result.to_pos2()
}
/// find a set of points that approximate the quadratic Bézier curve.
/// the number of points is determined by the tolerance.
/// the points may not be evenly distributed in the range [0.0,1.0] (t value)
pub fn flatten(&self, tolerance: Option<f32>) -> Vec<Pos2> {
let tolerance = tolerance.unwrap_or((self.points[0].x - self.points[2].x).abs() * 0.001);
let mut result = vec![self.points[0]];
self.for_each_flattened_with_t(tolerance, &mut |p, _t| {
result.push(p);
});
result
}
// copied from https://docs.rs/lyon_geom/latest/lyon_geom/
/// Compute a flattened approximation of the curve, invoking a callback at
/// each step.
///
/// The callback takes the point and corresponding curve parameter at each step.
///
/// This implements the algorithm described by Raph Levien at
/// <https://raphlinus.github.io/graphics/curves/2019/12/23/flatten-quadbez.html>
pub fn for_each_flattened_with_t<F>(&self, tolerance: f32, callback: &mut F)
where
F: FnMut(Pos2, f32),
{
let params = FlatteningParameters::from_curve(self, tolerance);
if params.is_point {
return;
}
let count = params.count as u32;
for index in 1..count {
let t = params.t_at_iteration(index as f32);
callback(self.sample(t), t);
}
callback(self.sample(1.0), 1.0);
}
}
impl From<QuadraticBezierShape> for Shape {
#[inline(always)]
fn from(shape: QuadraticBezierShape) -> Self {
Self::QuadraticBezier(shape)
}
}
// ----------------------------------------------------------------------------
// lyon_geom::flatten_cubic.rs
// copied from https://docs.rs/lyon_geom/latest/lyon_geom/
fn flatten_cubic_bezier_with_t<F: FnMut(Pos2, f32)>(
curve: &CubicBezierShape,
tolerance: f32,
callback: &mut F,
) {
// debug_assert!(tolerance >= S::EPSILON * S::EPSILON);
let quadratics_tolerance = tolerance * 0.2;
let flattening_tolerance = tolerance * 0.8;
let num_quadratics = curve.num_quadratics(quadratics_tolerance);
let step = 1.0 / num_quadratics as f32;
let n = num_quadratics;
let mut t0 = 0.0;
for _ in 0..(n - 1) {
let t1 = t0 + step;
let quadratic = single_curve_approximation(&curve.split_range(t0..t1));
quadratic.for_each_flattened_with_t(flattening_tolerance, &mut |point, t_sub| {
let t = t0 + step * t_sub;
callback(point, t);
});
t0 = t1;
}
// Do the last step manually to make sure we finish at t = 1.0 exactly.
let quadratic = single_curve_approximation(&curve.split_range(t0..1.0));
quadratic.for_each_flattened_with_t(flattening_tolerance, &mut |point, t_sub| {
let t = t0 + step * t_sub;
callback(point, t);
});
}
// from lyon_geom::quadratic_bezier.rs
// copied from https://docs.rs/lyon_geom/latest/lyon_geom/
struct FlatteningParameters {
count: f32,
integral_from: f32,
integral_step: f32,
inv_integral_from: f32,
div_inv_integral_diff: f32,
is_point: bool,
}
impl FlatteningParameters {
// https://raphlinus.github.io/graphics/curves/2019/12/23/flatten-quadbez.html
pub fn from_curve(curve: &QuadraticBezierShape, tolerance: f32) -> Self {
// Map the quadratic bézier segment to y = x^2 parabola.
let from = curve.points[0];
let ctrl = curve.points[1];
let to = curve.points[2];
let ddx = 2.0 * ctrl.x - from.x - to.x;
let ddy = 2.0 * ctrl.y - from.y - to.y;
let cross = (to.x - from.x) * ddy - (to.y - from.y) * ddx;
let inv_cross = 1.0 / cross;
let parabola_from = ((ctrl.x - from.x) * ddx + (ctrl.y - from.y) * ddy) * inv_cross;
let parabola_to = ((to.x - ctrl.x) * ddx + (to.y - ctrl.y) * ddy) * inv_cross;
// Note, scale can be NaN, for example with straight lines. When it happens the NaN will
// propagate to other parameters. We catch it all by setting the iteration count to zero
// and leave the rest as garbage.
let scale = cross.abs() / (ddx.hypot(ddy) * (parabola_to - parabola_from).abs());
let integral_from = approx_parabola_integral(parabola_from);
let integral_to = approx_parabola_integral(parabola_to);
let integral_diff = integral_to - integral_from;
let inv_integral_from = approx_parabola_inv_integral(integral_from);
let inv_integral_to = approx_parabola_inv_integral(integral_to);
let div_inv_integral_diff = 1.0 / (inv_integral_to - inv_integral_from);
// the original author thinks it can be stored as integer if it's not generic.
// but if so, we have to handle the edge case of the integral being infinite.
let mut count = (0.5 * integral_diff.abs() * (scale / tolerance).sqrt()).ceil();
let mut is_point = false;
// If count is NaN the curve can be approximated by a single straight line or a point.
if !count.is_finite() {
count = 0.0;
is_point = (to.x - from.x).hypot(to.y - from.y) < tolerance * tolerance;
}
let integral_step = integral_diff / count;
FlatteningParameters {
count,
integral_from,
integral_step,
inv_integral_from,
div_inv_integral_diff,
is_point,
}
}
fn t_at_iteration(&self, iteration: f32) -> f32 {
let u = approx_parabola_inv_integral(self.integral_from + self.integral_step * iteration);
(u - self.inv_integral_from) * self.div_inv_integral_diff
}
}
/// Compute an approximation to integral (1 + 4x^2) ^ -0.25 dx used in the flattening code.
fn approx_parabola_integral(x: f32) -> f32 {
let d: f32 = 0.67;
let quarter = 0.25;
x / (1.0 - d + (d.powi(4) + quarter * x * x).sqrt().sqrt())
}
/// Approximate the inverse of the function above.
fn approx_parabola_inv_integral(x: f32) -> f32 {
let b = 0.39;
let quarter = 0.25;
x * (1.0 - b + (b * b + quarter * x * x).sqrt())
}
fn single_curve_approximation(curve: &CubicBezierShape) -> QuadraticBezierShape {
let c1_x = (curve.points[1].x * 3.0 - curve.points[0].x) * 0.5;
let c1_y = (curve.points[1].y * 3.0 - curve.points[0].y) * 0.5;
let c2_x = (curve.points[2].x * 3.0 - curve.points[3].x) * 0.5;
let c2_y = (curve.points[2].y * 3.0 - curve.points[3].y) * 0.5;
let c = Pos2 {
x: (c1_x + c2_x) * 0.5,
y: (c1_y + c2_y) * 0.5,
};
QuadraticBezierShape {
points: [curve.points[0], c, curve.points[3]],
closed: curve.closed,
fill: curve.fill,
stroke: curve.stroke,
}
}
fn quadratic_for_each_local_extremum<F: FnMut(f32)>(p0: f32, p1: f32, p2: f32, cb: &mut F) {
// A quadratic Bézier curve can be derived by a linear function:
// p(t) = p0 + t(p1 - p0) + t^2(p2 - 2p1 + p0)
// The derivative is:
// p'(t) = (p1 - p0) + 2(p2 - 2p1 + p0)t or:
// f(x) = a* x + b
let a = p2 - 2.0 * p1 + p0;
// let b = p1 - p0;
// no need to check for zero, since we're only interested in local extrema
if a == 0.0 {
return;
}
let t = (p0 - p1) / a;
if t > 0.0 && t < 1.0 {
cb(t);
}
}
fn cubic_for_each_local_extremum<F: FnMut(f32)>(p0: f32, p1: f32, p2: f32, p3: f32, cb: &mut F) {
// See www.faculty.idc.ac.il/arik/quality/appendixa.html for an explanation
// A cubic Bézier curve can be derivated by the following equation:
// B'(t) = 3(1-t)^2(p1-p0) + 6(1-t)t(p2-p1) + 3t^2(p3-p2) or
// f(x) = a * x² + b * x + c
let a = 3.0 * (p3 + 3.0 * (p1 - p2) - p0);
let b = 6.0 * (p2 - 2.0 * p1 + p0);
let c = 3.0 * (p1 - p0);
let in_range = |t: f32| t <= 1.0 && t >= 0.0;
// linear situation
if a == 0.0 {
if b != 0.0 {
let t = -c / b;
if in_range(t) {
cb(t);
}
}
return;
}
let discr = b * b - 4.0 * a * c;
// no Real solution
if discr < 0.0 {
return;
}
// one Real solution
if discr == 0.0 {
let t = -b / (2.0 * a);
if in_range(t) {
cb(t);
}
return;
}
// two Real solutions
let discr = discr.sqrt();
let t1 = (-b - discr) / (2.0 * a);
let t2 = (-b + discr) / (2.0 * a);
if in_range(t1) {
cb(t1);
}
if in_range(t2) {
cb(t2);
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_quadratic_bounding_box() {
let curve = QuadraticBezierShape {
points: [
Pos2 { x: 110.0, y: 170.0 },
Pos2 { x: 10.0, y: 10.0 },
Pos2 { x: 180.0, y: 30.0 },
],
closed: false,
fill: Default::default(),
stroke: Default::default(),
};
let bbox = curve.logical_bounding_rect();
assert!((bbox.min.x - 72.96).abs() < 0.01);
assert!((bbox.min.y - 27.78).abs() < 0.01);
assert!((bbox.max.x - 180.0).abs() < 0.01);
assert!((bbox.max.y - 170.0).abs() < 0.01);
let mut result = vec![curve.points[0]]; //add the start point
curve.for_each_flattened_with_t(0.1, &mut |pos, _t| {
result.push(pos);
});
assert_eq!(result.len(), 26);
let curve = QuadraticBezierShape {
points: [
Pos2 { x: 110.0, y: 170.0 },
Pos2 { x: 180.0, y: 30.0 },
Pos2 { x: 10.0, y: 10.0 },
],
closed: false,
fill: Default::default(),
stroke: Default::default(),
};
let bbox = curve.logical_bounding_rect();
assert!((bbox.min.x - 10.0).abs() < 0.01);
assert!((bbox.min.y - 10.0).abs() < 0.01);
assert!((bbox.max.x - 130.42).abs() < 0.01);
assert!((bbox.max.y - 170.0).abs() < 0.01);
let mut result = vec![curve.points[0]]; //add the start point
curve.for_each_flattened_with_t(0.1, &mut |pos, _t| {
result.push(pos);
});
assert_eq!(result.len(), 25);
}
#[test]
fn test_quadratic_dfferent_tolerance() {
let curve = QuadraticBezierShape {
points: [
Pos2 { x: 110.0, y: 170.0 },
Pos2 { x: 180.0, y: 30.0 },
Pos2 { x: 10.0, y: 10.0 },
],
closed: false,
fill: Default::default(),
stroke: Default::default(),
};
let mut result = vec![curve.points[0]]; //add the start point
curve.for_each_flattened_with_t(1.0, &mut |pos, _t| {
result.push(pos);
});
assert_eq!(result.len(), 9);
let mut result = vec![curve.points[0]]; //add the start point
curve.for_each_flattened_with_t(0.1, &mut |pos, _t| {
result.push(pos);
});
assert_eq!(result.len(), 25);
let mut result = vec![curve.points[0]]; //add the start point
curve.for_each_flattened_with_t(0.01, &mut |pos, _t| {
result.push(pos);
});
assert_eq!(result.len(), 77);
let mut result = vec![curve.points[0]]; //add the start point
curve.for_each_flattened_with_t(0.001, &mut |pos, _t| {
result.push(pos);
});
assert_eq!(result.len(), 240);
}
#[test]
fn test_cubic_bounding_box() {
let curve = CubicBezierShape {
points: [
pos2(10.0, 10.0),
pos2(110.0, 170.0),
pos2(180.0, 30.0),
pos2(270.0, 210.0),
],
closed: false,
fill: Default::default(),
stroke: Default::default(),
};
let bbox = curve.logical_bounding_rect();
assert_eq!(bbox.min.x, 10.0);
assert_eq!(bbox.min.y, 10.0);
assert_eq!(bbox.max.x, 270.0);
assert_eq!(bbox.max.y, 210.0);
let curve = CubicBezierShape {
points: [
pos2(10.0, 10.0),
pos2(110.0, 170.0),
pos2(270.0, 210.0),
pos2(180.0, 30.0),
],
closed: false,
fill: Default::default(),
stroke: Default::default(),
};
let bbox = curve.logical_bounding_rect();
assert_eq!(bbox.min.x, 10.0);
assert_eq!(bbox.min.y, 10.0);
assert!((bbox.max.x - 206.50).abs() < 0.01);
assert!((bbox.max.y - 148.48).abs() < 0.01);
let curve = CubicBezierShape {
points: [
pos2(110.0, 170.0),
pos2(10.0, 10.0),
pos2(270.0, 210.0),
pos2(180.0, 30.0),
],
closed: false,
fill: Default::default(),
stroke: Default::default(),
};
let bbox = curve.logical_bounding_rect();
assert!((bbox.min.x - 86.71).abs() < 0.01);
assert!((bbox.min.y - 30.0).abs() < 0.01);
assert!((bbox.max.x - 199.27).abs() < 0.01);
assert!((bbox.max.y - 170.0).abs() < 0.01);
}
#[test]
fn test_cubic_different_tolerance_flattening() {
let curve = CubicBezierShape {
points: [
pos2(0.0, 0.0),
pos2(100.0, 0.0),
pos2(100.0, 100.0),
pos2(100.0, 200.0),
],
closed: false,
fill: Default::default(),
stroke: Default::default(),
};
let mut result = vec![curve.points[0]]; //add the start point
curve.for_each_flattened_with_t(1.0, &mut |pos, _t| {
result.push(pos);
});
assert_eq!(result.len(), 10);
let mut result = vec![curve.points[0]]; //add the start point
curve.for_each_flattened_with_t(0.5, &mut |pos, _t| {
result.push(pos);
});
assert_eq!(result.len(), 13);
let mut result = vec![curve.points[0]]; //add the start point
curve.for_each_flattened_with_t(0.1, &mut |pos, _t| {
result.push(pos);
});
assert_eq!(result.len(), 28);
let mut result = vec![curve.points[0]]; //add the start point
curve.for_each_flattened_with_t(0.01, &mut |pos, _t| {
result.push(pos);
});
assert_eq!(result.len(), 83);
let mut result = vec![curve.points[0]]; //add the start point
curve.for_each_flattened_with_t(0.001, &mut |pos, _t| {
result.push(pos);
});
assert_eq!(result.len(), 248);
}
#[test]
fn test_cubic_different_shape_flattening() {
let curve = CubicBezierShape {
points: [
pos2(90.0, 110.0),
pos2(30.0, 170.0),
pos2(210.0, 170.0),
pos2(170.0, 110.0),
],
closed: false,
fill: Default::default(),
stroke: Default::default(),
};
let mut result = vec![curve.points[0]]; //add the start point
curve.for_each_flattened_with_t(0.01, &mut |pos, _t| {
result.push(pos);
});
assert_eq!(result.len(), 117);
let curve = CubicBezierShape {
points: [
pos2(90.0, 110.0),
pos2(90.0, 170.0),
pos2(170.0, 170.0),
pos2(170.0, 110.0),
],
closed: false,
fill: Default::default(),
stroke: Default::default(),
};
let mut result = vec![curve.points[0]]; //add the start point
curve.for_each_flattened_with_t(0.01, &mut |pos, _t| {
result.push(pos);
});
assert_eq!(result.len(), 91);
let curve = CubicBezierShape {
points: [
pos2(90.0, 110.0),
pos2(110.0, 170.0),
pos2(150.0, 170.0),
pos2(170.0, 110.0),
],
closed: false,
fill: Default::default(),
stroke: Default::default(),
};
let mut result = vec![curve.points[0]]; //add the start point
curve.for_each_flattened_with_t(0.01, &mut |pos, _t| {
result.push(pos);
});
assert_eq!(result.len(), 75);
let curve = CubicBezierShape {
points: [
pos2(90.0, 110.0),
pos2(110.0, 170.0),
pos2(230.0, 110.0),
pos2(170.0, 110.0),
],
closed: false,
fill: Default::default(),
stroke: Default::default(),
};
let mut result = vec![curve.points[0]]; //add the start point
curve.for_each_flattened_with_t(0.01, &mut |pos, _t| {
result.push(pos);
});
assert_eq!(result.len(), 100);
let curve = CubicBezierShape {
points: [
pos2(90.0, 110.0),
pos2(110.0, 170.0),
pos2(210.0, 70.0),
pos2(170.0, 110.0),
],
closed: false,
fill: Default::default(),
stroke: Default::default(),
};
let mut result = vec![curve.points[0]]; //add the start point
curve.for_each_flattened_with_t(0.01, &mut |pos, _t| {
result.push(pos);
});
assert_eq!(result.len(), 71);
let curve = CubicBezierShape {
points: [
pos2(90.0, 110.0),
pos2(110.0, 170.0),
pos2(150.0, 50.0),
pos2(170.0, 110.0),
],
closed: false,
fill: Default::default(),
stroke: Default::default(),
};
let mut result = vec![curve.points[0]]; //add the start point
curve.for_each_flattened_with_t(0.01, &mut |pos, _t| {
result.push(pos);
});
assert_eq!(result.len(), 88);
}
#[test]
fn test_quadrtic_flattening() {
let curve = QuadraticBezierShape {
points: [pos2(0.0, 0.0), pos2(80.0, 200.0), pos2(100.0, 30.0)],
closed: false,
fill: Default::default(),
stroke: Default::default(),
};
let mut result = vec![curve.points[0]]; //add the start point
curve.for_each_flattened_with_t(1.0, &mut |pos, _t| {
result.push(pos);
});
assert_eq!(result.len(), 9);
let mut result = vec![curve.points[0]]; //add the start point
curve.for_each_flattened_with_t(0.5, &mut |pos, _t| {
result.push(pos);
});
assert_eq!(result.len(), 11);
let mut result = vec![curve.points[0]]; //add the start point
curve.for_each_flattened_with_t(0.1, &mut |pos, _t| {
result.push(pos);
});
assert_eq!(result.len(), 24);
let mut result = vec![curve.points[0]]; //add the start point
curve.for_each_flattened_with_t(0.01, &mut |pos, _t| {
result.push(pos);
});
assert_eq!(result.len(), 72);
let mut result = vec![curve.points[0]]; //add the start point
curve.for_each_flattened_with_t(0.001, &mut |pos, _t| {
result.push(pos);
});
assert_eq!(result.len(), 223);
}
}