egui/crates/egui-wgpu/src/renderer.rs
Emil Ernerfeldt 34e6e12f00
Specify deifferent minification and magnification filters (#2224)
* Specify deifferent minification and magnification filters

* Fixes

* Update changelogs

* Doctest fixes

* Add deprecation notice for RetainedImage::with_texture_filter
2022-11-02 17:54:06 +01:00

872 lines
33 KiB
Rust

#![allow(unsafe_code)]
use std::num::NonZeroU64;
use std::ops::Range;
use std::{borrow::Cow, collections::HashMap, num::NonZeroU32};
use egui::epaint::Vertex;
use egui::NumExt;
use egui::{epaint::Primitive, PaintCallbackInfo};
use type_map::concurrent::TypeMap;
use wgpu;
use wgpu::util::DeviceExt as _;
/// A callback function that can be used to compose an [`egui::PaintCallback`] for custom WGPU
/// rendering.
///
/// The callback is composed of two functions: `prepare` and `paint`.
///
/// `prepare` is called every frame before `paint`, and can use the passed-in [`wgpu::Device`] and
/// [`wgpu::Buffer`] to allocate or modify GPU resources such as buffers.
/// Additionally, a [`wgpu::CommandEncoder`] is provided in order to allow creation of
/// custom [`wgpu::RenderPass`]/[`wgpu::ComputePass`] or perform buffer/texture copies
/// which may serve as preparation to the final `paint`.
/// (This allows reusing the same [`wgpu::CommandEncoder`] for all callbacks and egui rendering itself)
///
/// `paint` is called after `prepare` and is given access to the [`wgpu::RenderPass`] so that it
/// can issue draw commands into the same [`wgpu::RenderPass`] that is used for all other egui elements.
///
/// The final argument of both the `prepare` and `paint` callbacks is a the
/// [`paint_callback_resources`][crate::renderer::Renderer::paint_callback_resources].
/// `paint_callback_resources` has the same lifetime as the Egui render pass, so it can be used to
/// store buffers, pipelines, and other information that needs to be accessed during the render
/// pass.
///
/// # Example
///
/// See the [`custom3d_wgpu`](https://github.com/emilk/egui/blob/master/crates/egui_demo_app/src/apps/custom3d_wgpu.rs) demo source for a detailed usage example.
pub struct CallbackFn {
prepare: Box<PrepareCallback>,
paint: Box<PaintCallback>,
}
type PrepareCallback =
dyn Fn(&wgpu::Device, &wgpu::Queue, &mut wgpu::CommandEncoder, &mut TypeMap) + Sync + Send;
type PaintCallback =
dyn for<'a, 'b> Fn(PaintCallbackInfo, &'a mut wgpu::RenderPass<'b>, &'b TypeMap) + Sync + Send;
impl Default for CallbackFn {
fn default() -> Self {
CallbackFn {
prepare: Box::new(|_, _, _, _| ()),
paint: Box::new(|_, _, _| ()),
}
}
}
impl CallbackFn {
pub fn new() -> Self {
Self::default()
}
/// Set the prepare callback
pub fn prepare<F>(mut self, prepare: F) -> Self
where
F: Fn(&wgpu::Device, &wgpu::Queue, &mut wgpu::CommandEncoder, &mut TypeMap)
+ Sync
+ Send
+ 'static,
{
self.prepare = Box::new(prepare) as _;
self
}
/// Set the paint callback
pub fn paint<F>(mut self, paint: F) -> Self
where
F: for<'a, 'b> Fn(PaintCallbackInfo, &'a mut wgpu::RenderPass<'b>, &'b TypeMap)
+ Sync
+ Send
+ 'static,
{
self.paint = Box::new(paint) as _;
self
}
}
/// Information about the screen used for rendering.
pub struct ScreenDescriptor {
/// Size of the window in physical pixels.
pub size_in_pixels: [u32; 2],
/// HiDPI scale factor (pixels per point).
pub pixels_per_point: f32,
}
impl ScreenDescriptor {
/// size in "logical" points
fn screen_size_in_points(&self) -> [f32; 2] {
[
self.size_in_pixels[0] as f32 / self.pixels_per_point,
self.size_in_pixels[1] as f32 / self.pixels_per_point,
]
}
}
/// Uniform buffer used when rendering.
#[derive(Clone, Copy, Debug, bytemuck::Pod, bytemuck::Zeroable)]
#[repr(C)]
struct UniformBuffer {
screen_size_in_points: [f32; 2],
// Uniform buffers need to be at least 16 bytes in WebGL.
// See https://github.com/gfx-rs/wgpu/issues/2072
_padding: [u32; 2],
}
struct SlicedBuffer {
buffer: wgpu::Buffer,
slices: Vec<Range<wgpu::BufferAddress>>,
capacity: wgpu::BufferAddress,
}
/// Renderer for a egui based GUI.
pub struct Renderer {
pipeline: wgpu::RenderPipeline,
index_buffer: SlicedBuffer,
vertex_buffer: SlicedBuffer,
uniform_buffer: wgpu::Buffer,
uniform_bind_group: wgpu::BindGroup,
texture_bind_group_layout: wgpu::BindGroupLayout,
/// Map of egui texture IDs to textures and their associated bindgroups (texture view +
/// sampler). The texture may be None if the TextureId is just a handle to a user-provided
/// sampler.
textures: HashMap<egui::TextureId, (Option<wgpu::Texture>, wgpu::BindGroup)>,
next_user_texture_id: u64,
samplers: HashMap<egui::TextureOptions, wgpu::Sampler>,
/// Storage for use by [`egui::PaintCallback`]'s that need to store resources such as render
/// pipelines that must have the lifetime of the renderpass.
pub paint_callback_resources: TypeMap,
}
impl Renderer {
/// Creates a renderer for a egui UI.
///
/// `output_color_format` should preferably be [`wgpu::TextureFormat::Rgba8Unorm`] or
/// [`wgpu::TextureFormat::Bgra8Unorm`], i.e. in gamma-space.
pub fn new(
device: &wgpu::Device,
output_color_format: wgpu::TextureFormat,
output_depth_format: Option<wgpu::TextureFormat>,
msaa_samples: u32,
) -> Self {
let shader = wgpu::ShaderModuleDescriptor {
label: Some("egui"),
source: wgpu::ShaderSource::Wgsl(Cow::Borrowed(include_str!("egui.wgsl"))),
};
let module = device.create_shader_module(shader);
let uniform_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("egui_uniform_buffer"),
contents: bytemuck::cast_slice(&[UniformBuffer {
screen_size_in_points: [0.0, 0.0],
_padding: Default::default(),
}]),
usage: wgpu::BufferUsages::UNIFORM | wgpu::BufferUsages::COPY_DST,
});
let uniform_bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
label: Some("egui_uniform_bind_group_layout"),
entries: &[wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::VERTEX,
ty: wgpu::BindingType::Buffer {
has_dynamic_offset: false,
min_binding_size: NonZeroU64::new(std::mem::size_of::<UniformBuffer>() as _),
ty: wgpu::BufferBindingType::Uniform,
},
count: None,
}],
});
let uniform_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
label: Some("egui_uniform_bind_group"),
layout: &uniform_bind_group_layout,
entries: &[wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::Buffer(wgpu::BufferBinding {
buffer: &uniform_buffer,
offset: 0,
size: None,
}),
}],
});
let texture_bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
label: Some("egui_texture_bind_group_layout"),
entries: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Texture {
multisampled: false,
sample_type: wgpu::TextureSampleType::Float { filterable: true },
view_dimension: wgpu::TextureViewDimension::D2,
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::Filtering),
count: None,
},
],
});
let pipeline_layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("egui_pipeline_layout"),
bind_group_layouts: &[&uniform_bind_group_layout, &texture_bind_group_layout],
push_constant_ranges: &[],
});
let depth_stencil = output_depth_format.map(|format| wgpu::DepthStencilState {
format,
depth_write_enabled: false,
depth_compare: wgpu::CompareFunction::Always,
stencil: wgpu::StencilState::default(),
bias: wgpu::DepthBiasState::default(),
});
let pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
label: Some("egui_pipeline"),
layout: Some(&pipeline_layout),
vertex: wgpu::VertexState {
entry_point: "vs_main",
module: &module,
buffers: &[wgpu::VertexBufferLayout {
array_stride: 5 * 4,
step_mode: wgpu::VertexStepMode::Vertex,
// 0: vec2 position
// 1: vec2 texture coordinates
// 2: uint color
attributes: &wgpu::vertex_attr_array![0 => Float32x2, 1 => Float32x2, 2 => Uint32],
}],
},
primitive: wgpu::PrimitiveState {
topology: wgpu::PrimitiveTopology::TriangleList,
unclipped_depth: false,
conservative: false,
cull_mode: None,
front_face: wgpu::FrontFace::default(),
polygon_mode: wgpu::PolygonMode::default(),
strip_index_format: None,
},
depth_stencil,
multisample: wgpu::MultisampleState {
alpha_to_coverage_enabled: false,
count: msaa_samples,
mask: !0,
},
fragment: Some(wgpu::FragmentState {
module: &module,
entry_point: if output_color_format.describe().srgb {
tracing::warn!("Detected a linear (sRGBA aware) framebuffer {:?}. egui prefers Rgba8Unorm or Bgra8Unorm", output_color_format);
"fs_main_linear_framebuffer"
} else {
"fs_main_gamma_framebuffer" // this is what we prefer
},
targets: &[Some(wgpu::ColorTargetState {
format: output_color_format,
blend: Some(wgpu::BlendState {
color: wgpu::BlendComponent {
src_factor: wgpu::BlendFactor::One,
dst_factor: wgpu::BlendFactor::OneMinusSrcAlpha,
operation: wgpu::BlendOperation::Add,
},
alpha: wgpu::BlendComponent {
src_factor: wgpu::BlendFactor::OneMinusDstAlpha,
dst_factor: wgpu::BlendFactor::One,
operation: wgpu::BlendOperation::Add,
},
}),
write_mask: wgpu::ColorWrites::ALL,
})],
}),
multiview: None,
});
const VERTEX_BUFFER_START_CAPACITY: wgpu::BufferAddress =
(std::mem::size_of::<Vertex>() * 1024) as _;
const INDEX_BUFFER_START_CAPACITY: wgpu::BufferAddress =
(std::mem::size_of::<u32>() * 1024 * 3) as _;
Self {
pipeline,
vertex_buffer: SlicedBuffer {
buffer: create_vertex_buffer(device, VERTEX_BUFFER_START_CAPACITY),
slices: Vec::with_capacity(64),
capacity: VERTEX_BUFFER_START_CAPACITY,
},
index_buffer: SlicedBuffer {
buffer: create_index_buffer(device, INDEX_BUFFER_START_CAPACITY),
slices: Vec::with_capacity(64),
capacity: INDEX_BUFFER_START_CAPACITY,
},
uniform_buffer,
uniform_bind_group,
texture_bind_group_layout,
textures: HashMap::new(),
next_user_texture_id: 0,
samplers: HashMap::new(),
paint_callback_resources: TypeMap::default(),
}
}
/// Executes the egui renderer onto an existing wgpu renderpass.
pub fn render<'rp>(
&'rp self,
render_pass: &mut wgpu::RenderPass<'rp>,
paint_jobs: &[egui::epaint::ClippedPrimitive],
screen_descriptor: &ScreenDescriptor,
) {
let pixels_per_point = screen_descriptor.pixels_per_point;
let size_in_pixels = screen_descriptor.size_in_pixels;
// Whether or not we need to reset the render pass because a paint callback has just
// run.
let mut needs_reset = true;
let mut index_buffer_slices = self.index_buffer.slices.iter();
let mut vertex_buffer_slices = self.vertex_buffer.slices.iter();
for egui::ClippedPrimitive {
clip_rect,
primitive,
} in paint_jobs
{
if needs_reset {
render_pass.set_viewport(
0.0,
0.0,
size_in_pixels[0] as f32,
size_in_pixels[1] as f32,
0.0,
1.0,
);
render_pass.set_pipeline(&self.pipeline);
render_pass.set_bind_group(0, &self.uniform_bind_group, &[]);
needs_reset = false;
}
{
let rect = ScissorRect::new(clip_rect, pixels_per_point, size_in_pixels);
if rect.width == 0 || rect.height == 0 {
// Skip rendering zero-sized clip areas.
if let Primitive::Mesh(_) = primitive {
// If this is a mesh, we need to advance the index and vertex buffer iterators:
index_buffer_slices.next().unwrap();
vertex_buffer_slices.next().unwrap();
}
continue;
}
render_pass.set_scissor_rect(rect.x, rect.y, rect.width, rect.height);
}
match primitive {
Primitive::Mesh(mesh) => {
let index_buffer_slice = index_buffer_slices.next().unwrap();
let vertex_buffer_slice = vertex_buffer_slices.next().unwrap();
if let Some((_texture, bind_group)) = self.textures.get(&mesh.texture_id) {
render_pass.set_bind_group(1, bind_group, &[]);
render_pass.set_index_buffer(
self.index_buffer.buffer.slice(index_buffer_slice.clone()),
wgpu::IndexFormat::Uint32,
);
render_pass.set_vertex_buffer(
0,
self.vertex_buffer.buffer.slice(vertex_buffer_slice.clone()),
);
render_pass.draw_indexed(0..mesh.indices.len() as u32, 0, 0..1);
} else {
tracing::warn!("Missing texture: {:?}", mesh.texture_id);
}
}
Primitive::Callback(callback) => {
let cbfn = if let Some(c) = callback.callback.downcast_ref::<CallbackFn>() {
c
} else {
// We already warned in the `prepare` callback
continue;
};
if callback.rect.is_positive() {
needs_reset = true;
{
// Set the viewport rect
// Transform callback rect to physical pixels:
let rect_min_x = pixels_per_point * callback.rect.min.x;
let rect_min_y = pixels_per_point * callback.rect.min.y;
let rect_max_x = pixels_per_point * callback.rect.max.x;
let rect_max_y = pixels_per_point * callback.rect.max.y;
let rect_min_x = rect_min_x.round();
let rect_min_y = rect_min_y.round();
let rect_max_x = rect_max_x.round();
let rect_max_y = rect_max_y.round();
render_pass.set_viewport(
rect_min_x,
rect_min_y,
rect_max_x - rect_min_x,
rect_max_y - rect_min_y,
0.0,
1.0,
);
}
(cbfn.paint)(
PaintCallbackInfo {
viewport: callback.rect,
clip_rect: *clip_rect,
pixels_per_point,
screen_size_px: size_in_pixels,
},
render_pass,
&self.paint_callback_resources,
);
}
}
}
}
render_pass.set_scissor_rect(0, 0, size_in_pixels[0], size_in_pixels[1]);
}
/// Should be called before `render()`.
pub fn update_texture(
&mut self,
device: &wgpu::Device,
queue: &wgpu::Queue,
id: egui::TextureId,
image_delta: &egui::epaint::ImageDelta,
) {
let width = image_delta.image.width() as u32;
let height = image_delta.image.height() as u32;
let size = wgpu::Extent3d {
width,
height,
depth_or_array_layers: 1,
};
let data_color32 = match &image_delta.image {
egui::ImageData::Color(image) => {
assert_eq!(
width as usize * height as usize,
image.pixels.len(),
"Mismatch between texture size and texel count"
);
Cow::Borrowed(&image.pixels)
}
egui::ImageData::Font(image) => {
assert_eq!(
width as usize * height as usize,
image.pixels.len(),
"Mismatch between texture size and texel count"
);
Cow::Owned(image.srgba_pixels(None).collect::<Vec<_>>())
}
};
let data_bytes: &[u8] = bytemuck::cast_slice(data_color32.as_slice());
let queue_write_data_to_texture = |texture, origin| {
queue.write_texture(
wgpu::ImageCopyTexture {
texture,
mip_level: 0,
origin,
aspect: wgpu::TextureAspect::All,
},
data_bytes,
wgpu::ImageDataLayout {
offset: 0,
bytes_per_row: NonZeroU32::new(4 * width),
rows_per_image: NonZeroU32::new(height),
},
size,
);
};
if let Some(pos) = image_delta.pos {
// update the existing texture
let (texture, _bind_group) = self
.textures
.get(&id)
.expect("Tried to update a texture that has not been allocated yet.");
let origin = wgpu::Origin3d {
x: pos[0] as u32,
y: pos[1] as u32,
z: 0,
};
queue_write_data_to_texture(
texture.as_ref().expect("Tried to update user texture."),
origin,
);
} else {
// allocate a new texture
// Use same label for all resources associated with this texture id (no point in retyping the type)
let label_str = format!("egui_texid_{:?}", id);
let label = Some(label_str.as_str());
let texture = device.create_texture(&wgpu::TextureDescriptor {
label,
size,
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: wgpu::TextureFormat::Rgba8UnormSrgb, // Minspec for wgpu WebGL emulation is WebGL2, so this should always be supported.
usage: wgpu::TextureUsages::TEXTURE_BINDING | wgpu::TextureUsages::COPY_DST,
});
let sampler = self
.samplers
.entry(image_delta.options)
.or_insert_with(|| create_sampler(image_delta.options, device));
let bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
label,
layout: &self.texture_bind_group_layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::TextureView(
&texture.create_view(&wgpu::TextureViewDescriptor::default()),
),
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::Sampler(sampler),
},
],
});
let origin = wgpu::Origin3d::ZERO;
queue_write_data_to_texture(&texture, origin);
self.textures.insert(id, (Some(texture), bind_group));
};
}
pub fn free_texture(&mut self, id: &egui::TextureId) {
self.textures.remove(id);
}
/// Get the WGPU texture and bind group associated to a texture that has been allocated by egui.
///
/// This could be used by custom paint hooks to render images that have been added through with
/// [`egui_extras::RetainedImage`](https://docs.rs/egui_extras/latest/egui_extras/image/struct.RetainedImage.html)
/// or [`egui::Context::load_texture`].
pub fn texture(
&self,
id: &egui::TextureId,
) -> Option<&(Option<wgpu::Texture>, wgpu::BindGroup)> {
self.textures.get(id)
}
/// Registers a `wgpu::Texture` with a `egui::TextureId`.
///
/// This enables the application to reference the texture inside an image ui element.
/// This effectively enables off-screen rendering inside the egui UI. Texture must have
/// the texture format `TextureFormat::Rgba8UnormSrgb` and
/// Texture usage `TextureUsage::SAMPLED`.
pub fn register_native_texture(
&mut self,
device: &wgpu::Device,
texture: &wgpu::TextureView,
texture_filter: wgpu::FilterMode,
) -> egui::TextureId {
self.register_native_texture_with_sampler_options(
device,
texture,
wgpu::SamplerDescriptor {
label: Some(format!("egui_user_image_{}", self.next_user_texture_id).as_str()),
mag_filter: texture_filter,
min_filter: texture_filter,
..Default::default()
},
)
}
/// Registers a `wgpu::Texture` with an existing `egui::TextureId`.
///
/// This enables applications to reuse `TextureId`s.
pub fn update_egui_texture_from_wgpu_texture(
&mut self,
device: &wgpu::Device,
texture: &wgpu::TextureView,
texture_filter: wgpu::FilterMode,
id: egui::TextureId,
) {
self.update_egui_texture_from_wgpu_texture_with_sampler_options(
device,
texture,
wgpu::SamplerDescriptor {
label: Some(format!("egui_user_image_{}", self.next_user_texture_id).as_str()),
mag_filter: texture_filter,
min_filter: texture_filter,
..Default::default()
},
id,
);
}
/// Registers a `wgpu::Texture` with a `egui::TextureId` while also accepting custom
/// `wgpu::SamplerDescriptor` options.
///
/// This allows applications to specify individual minification/magnification filters as well as
/// custom mipmap and tiling options.
///
/// The `Texture` must have the format `TextureFormat::Rgba8UnormSrgb` and usage
/// `TextureUsage::SAMPLED`. Any compare function supplied in the `SamplerDescriptor` will be
/// ignored.
#[allow(clippy::needless_pass_by_value)] // false positive
pub fn register_native_texture_with_sampler_options(
&mut self,
device: &wgpu::Device,
texture: &wgpu::TextureView,
sampler_descriptor: wgpu::SamplerDescriptor<'_>,
) -> egui::TextureId {
let sampler = device.create_sampler(&wgpu::SamplerDescriptor {
compare: None,
..sampler_descriptor
});
let bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
label: Some(format!("egui_user_image_{}", self.next_user_texture_id).as_str()),
layout: &self.texture_bind_group_layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::TextureView(texture),
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::Sampler(&sampler),
},
],
});
let id = egui::TextureId::User(self.next_user_texture_id);
self.textures.insert(id, (None, bind_group));
self.next_user_texture_id += 1;
id
}
/// Registers a `wgpu::Texture` with an existing `egui::TextureId` while also accepting custom
/// `wgpu::SamplerDescriptor` options.
///
/// This allows applications to reuse `TextureId`s created with custom sampler options.
#[allow(clippy::needless_pass_by_value)] // false positive
pub fn update_egui_texture_from_wgpu_texture_with_sampler_options(
&mut self,
device: &wgpu::Device,
texture: &wgpu::TextureView,
sampler_descriptor: wgpu::SamplerDescriptor<'_>,
id: egui::TextureId,
) {
let (_user_texture, user_texture_binding) = self
.textures
.get_mut(&id)
.expect("Tried to update a texture that has not been allocated yet.");
let sampler = device.create_sampler(&wgpu::SamplerDescriptor {
compare: None,
..sampler_descriptor
});
let bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
label: Some(format!("egui_user_image_{}", self.next_user_texture_id).as_str()),
layout: &self.texture_bind_group_layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::TextureView(texture),
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::Sampler(&sampler),
},
],
});
*user_texture_binding = bind_group;
}
/// Uploads the uniform, vertex and index data used by the renderer.
/// Should be called before `render()`.
pub fn update_buffers(
&mut self,
device: &wgpu::Device,
queue: &wgpu::Queue,
encoder: &mut wgpu::CommandEncoder,
paint_jobs: &[egui::epaint::ClippedPrimitive],
screen_descriptor: &ScreenDescriptor,
) {
let screen_size_in_points = screen_descriptor.screen_size_in_points();
// Update uniform buffer
queue.write_buffer(
&self.uniform_buffer,
0,
bytemuck::cast_slice(&[UniformBuffer {
screen_size_in_points,
_padding: Default::default(),
}]),
);
// Determine how many vertices & indices need to be rendered.
let (vertex_count, index_count) =
paint_jobs.iter().fold((0, 0), |acc, clipped_primitive| {
match &clipped_primitive.primitive {
Primitive::Mesh(mesh) => {
(acc.0 + mesh.vertices.len(), acc.1 + mesh.indices.len())
}
Primitive::Callback(_) => acc,
}
});
// Resize index buffer if needed.
{
self.index_buffer.slices.clear();
let required_size = (std::mem::size_of::<u32>() * index_count) as u64;
if self.index_buffer.capacity < required_size {
self.index_buffer.capacity =
(self.index_buffer.capacity * 2).at_least(required_size);
self.index_buffer.buffer = create_index_buffer(device, self.index_buffer.capacity);
}
}
// Resize vertex buffer if needed.
{
self.vertex_buffer.slices.clear();
let required_size = (std::mem::size_of::<Vertex>() * vertex_count) as u64;
if self.vertex_buffer.capacity < required_size {
self.vertex_buffer.capacity =
(self.vertex_buffer.capacity * 2).at_least(required_size);
self.vertex_buffer.buffer =
create_vertex_buffer(device, self.vertex_buffer.capacity);
}
}
// Upload index & vertex data and call user callbacks
for egui::ClippedPrimitive { primitive, .. } in paint_jobs.iter() {
match primitive {
Primitive::Mesh(mesh) => {
{
let index_offset = self.index_buffer.slices.last().unwrap_or(&(0..0)).end;
let data = bytemuck::cast_slice(&mesh.indices);
queue.write_buffer(&self.index_buffer.buffer, index_offset, data);
self.index_buffer
.slices
.push(index_offset..(data.len() as wgpu::BufferAddress + index_offset));
}
{
let vertex_offset = self.vertex_buffer.slices.last().unwrap_or(&(0..0)).end;
let data = bytemuck::cast_slice(&mesh.vertices);
queue.write_buffer(&self.vertex_buffer.buffer, vertex_offset, data);
self.vertex_buffer.slices.push(
vertex_offset..(data.len() as wgpu::BufferAddress + vertex_offset),
);
}
}
Primitive::Callback(callback) => {
let cbfn = if let Some(c) = callback.callback.downcast_ref::<CallbackFn>() {
c
} else {
tracing::warn!("Unknown paint callback: expected `egui_wgpu::CallbackFn`");
continue;
};
(cbfn.prepare)(device, queue, encoder, &mut self.paint_callback_resources);
}
}
}
}
}
fn create_sampler(options: egui::TextureOptions, device: &wgpu::Device) -> wgpu::Sampler {
let mag_filter = match options.magnification {
egui::TextureFilter::Nearest => wgpu::FilterMode::Nearest,
egui::TextureFilter::Linear => wgpu::FilterMode::Linear,
};
let min_filter = match options.minification {
egui::TextureFilter::Nearest => wgpu::FilterMode::Nearest,
egui::TextureFilter::Linear => wgpu::FilterMode::Linear,
};
device.create_sampler(&wgpu::SamplerDescriptor {
label: Some(&format!(
"egui sampler (mag: {:?}, min {:?})",
mag_filter, min_filter
)),
mag_filter,
min_filter,
..Default::default()
})
}
fn create_vertex_buffer(device: &wgpu::Device, size: u64) -> wgpu::Buffer {
device.create_buffer(&wgpu::BufferDescriptor {
label: Some("egui_vertex_buffer"),
usage: wgpu::BufferUsages::VERTEX | wgpu::BufferUsages::COPY_DST,
size,
mapped_at_creation: false,
})
}
fn create_index_buffer(device: &wgpu::Device, size: u64) -> wgpu::Buffer {
device.create_buffer(&wgpu::BufferDescriptor {
label: Some("egui_index_buffer"),
usage: wgpu::BufferUsages::INDEX | wgpu::BufferUsages::COPY_DST,
size,
mapped_at_creation: false,
})
}
/// A Rect in physical pixel space, used for setting cliipping rectangles.
struct ScissorRect {
x: u32,
y: u32,
width: u32,
height: u32,
}
impl ScissorRect {
fn new(clip_rect: &egui::Rect, pixels_per_point: f32, target_size: [u32; 2]) -> Self {
// Transform clip rect to physical pixels:
let clip_min_x = pixels_per_point * clip_rect.min.x;
let clip_min_y = pixels_per_point * clip_rect.min.y;
let clip_max_x = pixels_per_point * clip_rect.max.x;
let clip_max_y = pixels_per_point * clip_rect.max.y;
// Round to integer:
let clip_min_x = clip_min_x.round() as u32;
let clip_min_y = clip_min_y.round() as u32;
let clip_max_x = clip_max_x.round() as u32;
let clip_max_y = clip_max_y.round() as u32;
// Clamp:
let clip_min_x = clip_min_x.clamp(0, target_size[0]);
let clip_min_y = clip_min_y.clamp(0, target_size[1]);
let clip_max_x = clip_max_x.clamp(clip_min_x, target_size[0]);
let clip_max_y = clip_max_y.clamp(clip_min_y, target_size[1]);
Self {
x: clip_min_x,
y: clip_min_y,
width: clip_max_x - clip_min_x,
height: clip_max_y - clip_min_y,
}
}
}
#[test]
fn renderer_impl_send_sync() {
fn assert_send_sync<T: Send + Sync>() {}
assert_send_sync::<Renderer>();
}