egui/crates/emath/src/vec2.rs
2022-08-20 10:41:49 +02:00

463 lines
10 KiB
Rust

use std::ops::{Add, AddAssign, Div, Mul, MulAssign, Neg, Sub, SubAssign};
/// A vector has a direction and length.
/// A [`Vec2`] is often used to represent a size.
///
/// emath represents positions using [`crate::Pos2`].
///
/// Normally the units are points (logical pixels).
#[repr(C)]
#[derive(Clone, Copy, Default, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
#[cfg_attr(feature = "bytemuck", derive(bytemuck::Pod, bytemuck::Zeroable))]
pub struct Vec2 {
/// Rightwards. Width.
pub x: f32,
/// Downwards. Height.
pub y: f32,
}
/// `vec2(x, y) == Vec2::new(x, y)`
#[inline(always)]
pub const fn vec2(x: f32, y: f32) -> Vec2 {
Vec2 { x, y }
}
// ----------------------------------------------------------------------------
// Compatibility and convenience conversions to and from [f32; 2]:
impl From<[f32; 2]> for Vec2 {
#[inline(always)]
fn from(v: [f32; 2]) -> Self {
Self { x: v[0], y: v[1] }
}
}
impl From<&[f32; 2]> for Vec2 {
#[inline(always)]
fn from(v: &[f32; 2]) -> Self {
Self { x: v[0], y: v[1] }
}
}
impl From<Vec2> for [f32; 2] {
#[inline(always)]
fn from(v: Vec2) -> Self {
[v.x, v.y]
}
}
impl From<&Vec2> for [f32; 2] {
#[inline(always)]
fn from(v: &Vec2) -> Self {
[v.x, v.y]
}
}
// ----------------------------------------------------------------------------
// Compatibility and convenience conversions to and from (f32, f32):
impl From<(f32, f32)> for Vec2 {
#[inline(always)]
fn from(v: (f32, f32)) -> Self {
Self { x: v.0, y: v.1 }
}
}
impl From<&(f32, f32)> for Vec2 {
#[inline(always)]
fn from(v: &(f32, f32)) -> Self {
Self { x: v.0, y: v.1 }
}
}
impl From<Vec2> for (f32, f32) {
#[inline(always)]
fn from(v: Vec2) -> Self {
(v.x, v.y)
}
}
impl From<&Vec2> for (f32, f32) {
#[inline(always)]
fn from(v: &Vec2) -> Self {
(v.x, v.y)
}
}
// ----------------------------------------------------------------------------
// Mint compatibility and convenience conversions
#[cfg(feature = "mint")]
impl From<mint::Vector2<f32>> for Vec2 {
#[inline]
fn from(v: mint::Vector2<f32>) -> Self {
Self::new(v.x, v.y)
}
}
#[cfg(feature = "mint")]
impl From<Vec2> for mint::Vector2<f32> {
#[inline]
fn from(v: Vec2) -> Self {
Self { x: v.x, y: v.y }
}
}
// ----------------------------------------------------------------------------
impl Vec2 {
pub const X: Vec2 = Vec2 { x: 1.0, y: 0.0 };
pub const Y: Vec2 = Vec2 { x: 0.0, y: 1.0 };
pub const RIGHT: Vec2 = Vec2 { x: 1.0, y: 0.0 };
pub const LEFT: Vec2 = Vec2 { x: -1.0, y: 0.0 };
pub const UP: Vec2 = Vec2 { x: 0.0, y: -1.0 };
pub const DOWN: Vec2 = Vec2 { x: 0.0, y: 1.0 };
pub const ZERO: Self = Self { x: 0.0, y: 0.0 };
pub const INFINITY: Self = Self::splat(f32::INFINITY);
#[inline(always)]
pub const fn new(x: f32, y: f32) -> Self {
Self { x, y }
}
/// Set both `x` and `y` to the same value.
#[inline(always)]
pub const fn splat(v: f32) -> Self {
Self { x: v, y: v }
}
/// Treat this vector as a position.
/// `v.to_pos2()` is equivalent to `Pos2::default() + v`.
#[inline(always)]
pub fn to_pos2(self) -> crate::Pos2 {
crate::Pos2 {
x: self.x,
y: self.y,
}
}
/// Safe normalize: returns zero if input is zero.
#[must_use]
#[inline(always)]
pub fn normalized(self) -> Self {
let len = self.length();
if len <= 0.0 {
self
} else {
self / len
}
}
/// Rotates the vector by 90°, i.e positive X to positive Y
/// (clockwise in egui coordinates).
#[inline(always)]
pub fn rot90(self) -> Self {
vec2(self.y, -self.x)
}
#[inline(always)]
pub fn length(self) -> f32 {
self.x.hypot(self.y)
}
#[inline(always)]
pub fn length_sq(self) -> f32 {
self.x * self.x + self.y * self.y
}
/// Measures the angle of the vector.
///
/// ```
/// # use emath::Vec2;
/// use std::f32::consts::TAU;
///
/// assert_eq!(Vec2::ZERO.angle(), 0.0);
/// assert_eq!(Vec2::angled(0.0).angle(), 0.0);
/// assert_eq!(Vec2::angled(1.0).angle(), 1.0);
/// assert_eq!(Vec2::X.angle(), 0.0);
/// assert_eq!(Vec2::Y.angle(), 0.25 * TAU);
///
/// assert_eq!(Vec2::RIGHT.angle(), 0.0);
/// assert_eq!(Vec2::DOWN.angle(), 0.25 * TAU);
/// assert_eq!(Vec2::UP.angle(), -0.25 * TAU);
/// ```
#[inline(always)]
pub fn angle(self) -> f32 {
self.y.atan2(self.x)
}
/// Create a unit vector with the given CW angle (in radians).
/// * An angle of zero gives the unit X axis.
/// * An angle of 𝞃/4 = 90° gives the unit Y axis.
///
/// ```
/// # use emath::Vec2;
/// use std::f32::consts::TAU;
///
/// assert_eq!(Vec2::angled(0.0), Vec2::X);
/// assert!((Vec2::angled(0.25 * TAU) - Vec2::Y).length() < 1e-5);
/// ```
#[inline(always)]
pub fn angled(angle: f32) -> Self {
vec2(angle.cos(), angle.sin())
}
#[must_use]
#[inline(always)]
pub fn floor(self) -> Self {
vec2(self.x.floor(), self.y.floor())
}
#[must_use]
#[inline(always)]
pub fn round(self) -> Self {
vec2(self.x.round(), self.y.round())
}
#[must_use]
#[inline(always)]
pub fn ceil(self) -> Self {
vec2(self.x.ceil(), self.y.ceil())
}
#[must_use]
#[inline]
pub fn abs(self) -> Self {
vec2(self.x.abs(), self.y.abs())
}
/// True if all members are also finite.
#[inline(always)]
pub fn is_finite(self) -> bool {
self.x.is_finite() && self.y.is_finite()
}
/// True if any member is NaN.
#[inline(always)]
pub fn any_nan(self) -> bool {
self.x.is_nan() || self.y.is_nan()
}
#[must_use]
#[inline]
pub fn min(self, other: Self) -> Self {
vec2(self.x.min(other.x), self.y.min(other.y))
}
#[must_use]
#[inline]
pub fn max(self, other: Self) -> Self {
vec2(self.x.max(other.x), self.y.max(other.y))
}
/// The dot-product of two vectors.
#[inline]
pub fn dot(self, other: Self) -> f32 {
self.x * other.x + self.y * other.y
}
/// Returns the minimum of `self.x` and `self.y`.
#[must_use]
#[inline(always)]
pub fn min_elem(self) -> f32 {
self.x.min(self.y)
}
/// Returns the maximum of `self.x` and `self.y`.
#[inline(always)]
#[must_use]
pub fn max_elem(self) -> f32 {
self.x.max(self.y)
}
#[must_use]
#[inline]
pub fn clamp(self, min: Self, max: Self) -> Self {
Self {
x: self.x.clamp(min.x, max.x),
y: self.y.clamp(min.y, max.y),
}
}
}
impl std::ops::Index<usize> for Vec2 {
type Output = f32;
#[inline(always)]
fn index(&self, index: usize) -> &f32 {
match index {
0 => &self.x,
1 => &self.y,
_ => panic!("Vec2 index out of bounds: {}", index),
}
}
}
impl std::ops::IndexMut<usize> for Vec2 {
#[inline(always)]
fn index_mut(&mut self, index: usize) -> &mut f32 {
match index {
0 => &mut self.x,
1 => &mut self.y,
_ => panic!("Vec2 index out of bounds: {}", index),
}
}
}
impl Eq for Vec2 {}
impl Neg for Vec2 {
type Output = Vec2;
#[inline(always)]
fn neg(self) -> Vec2 {
vec2(-self.x, -self.y)
}
}
impl AddAssign for Vec2 {
#[inline(always)]
fn add_assign(&mut self, rhs: Vec2) {
*self = Vec2 {
x: self.x + rhs.x,
y: self.y + rhs.y,
};
}
}
impl SubAssign for Vec2 {
#[inline(always)]
fn sub_assign(&mut self, rhs: Vec2) {
*self = Vec2 {
x: self.x - rhs.x,
y: self.y - rhs.y,
};
}
}
impl Add for Vec2 {
type Output = Vec2;
#[inline(always)]
fn add(self, rhs: Vec2) -> Vec2 {
Vec2 {
x: self.x + rhs.x,
y: self.y + rhs.y,
}
}
}
impl Sub for Vec2 {
type Output = Vec2;
#[inline(always)]
fn sub(self, rhs: Vec2) -> Vec2 {
Vec2 {
x: self.x - rhs.x,
y: self.y - rhs.y,
}
}
}
/// Element-wise multiplication
impl Mul<Vec2> for Vec2 {
type Output = Vec2;
#[inline(always)]
fn mul(self, vec: Vec2) -> Vec2 {
Vec2 {
x: self.x * vec.x,
y: self.y * vec.y,
}
}
}
/// Element-wise division
impl Div<Vec2> for Vec2 {
type Output = Vec2;
#[inline(always)]
fn div(self, rhs: Vec2) -> Vec2 {
Vec2 {
x: self.x / rhs.x,
y: self.y / rhs.y,
}
}
}
impl MulAssign<f32> for Vec2 {
#[inline(always)]
fn mul_assign(&mut self, rhs: f32) {
self.x *= rhs;
self.y *= rhs;
}
}
impl Mul<f32> for Vec2 {
type Output = Vec2;
#[inline(always)]
fn mul(self, factor: f32) -> Vec2 {
Vec2 {
x: self.x * factor,
y: self.y * factor,
}
}
}
impl Mul<Vec2> for f32 {
type Output = Vec2;
#[inline(always)]
fn mul(self, vec: Vec2) -> Vec2 {
Vec2 {
x: self * vec.x,
y: self * vec.y,
}
}
}
impl Div<f32> for Vec2 {
type Output = Vec2;
#[inline(always)]
fn div(self, factor: f32) -> Vec2 {
Vec2 {
x: self.x / factor,
y: self.y / factor,
}
}
}
impl std::fmt::Debug for Vec2 {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "[{:.1} {:.1}]", self.x, self.y)
}
}
#[test]
fn test_vec2() {
macro_rules! almost_eq {
($left: expr, $right: expr) => {
let left = $left;
let right = $right;
assert!((left - right).abs() < 1e-6, "{} != {}", left, right);
};
}
use std::f32::consts::TAU;
assert_eq!(Vec2::ZERO.angle(), 0.0);
assert_eq!(Vec2::angled(0.0).angle(), 0.0);
assert_eq!(Vec2::angled(1.0).angle(), 1.0);
assert_eq!(Vec2::X.angle(), 0.0);
assert_eq!(Vec2::Y.angle(), 0.25 * TAU);
assert_eq!(Vec2::RIGHT.angle(), 0.0);
assert_eq!(Vec2::DOWN.angle(), 0.25 * TAU);
almost_eq!(Vec2::LEFT.angle(), 0.50 * TAU);
assert_eq!(Vec2::UP.angle(), -0.25 * TAU);
}