use std::ops::{Add, AddAssign, Div, Mul, MulAssign, Neg, Sub, SubAssign}; /// A vector has a direction and length. /// A [`Vec2`] is often used to represent a size. /// /// emath represents positions using [`crate::Pos2`]. /// /// Normally the units are points (logical pixels). #[repr(C)] #[derive(Clone, Copy, Default, PartialEq)] #[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))] #[cfg_attr(feature = "bytemuck", derive(bytemuck::Pod, bytemuck::Zeroable))] pub struct Vec2 { /// Rightwards. Width. pub x: f32, /// Downwards. Height. pub y: f32, } /// `vec2(x, y) == Vec2::new(x, y)` #[inline(always)] pub const fn vec2(x: f32, y: f32) -> Vec2 { Vec2 { x, y } } // ---------------------------------------------------------------------------- // Compatibility and convenience conversions to and from [f32; 2]: impl From<[f32; 2]> for Vec2 { #[inline(always)] fn from(v: [f32; 2]) -> Self { Self { x: v[0], y: v[1] } } } impl From<&[f32; 2]> for Vec2 { #[inline(always)] fn from(v: &[f32; 2]) -> Self { Self { x: v[0], y: v[1] } } } impl From for [f32; 2] { #[inline(always)] fn from(v: Vec2) -> Self { [v.x, v.y] } } impl From<&Vec2> for [f32; 2] { #[inline(always)] fn from(v: &Vec2) -> Self { [v.x, v.y] } } // ---------------------------------------------------------------------------- // Compatibility and convenience conversions to and from (f32, f32): impl From<(f32, f32)> for Vec2 { #[inline(always)] fn from(v: (f32, f32)) -> Self { Self { x: v.0, y: v.1 } } } impl From<&(f32, f32)> for Vec2 { #[inline(always)] fn from(v: &(f32, f32)) -> Self { Self { x: v.0, y: v.1 } } } impl From for (f32, f32) { #[inline(always)] fn from(v: Vec2) -> Self { (v.x, v.y) } } impl From<&Vec2> for (f32, f32) { #[inline(always)] fn from(v: &Vec2) -> Self { (v.x, v.y) } } // ---------------------------------------------------------------------------- // Mint compatibility and convenience conversions #[cfg(feature = "mint")] impl From> for Vec2 { #[inline] fn from(v: mint::Vector2) -> Self { Self::new(v.x, v.y) } } #[cfg(feature = "mint")] impl From for mint::Vector2 { #[inline] fn from(v: Vec2) -> Self { Self { x: v.x, y: v.y } } } // ---------------------------------------------------------------------------- impl Vec2 { pub const X: Vec2 = Vec2 { x: 1.0, y: 0.0 }; pub const Y: Vec2 = Vec2 { x: 0.0, y: 1.0 }; pub const RIGHT: Vec2 = Vec2 { x: 1.0, y: 0.0 }; pub const LEFT: Vec2 = Vec2 { x: -1.0, y: 0.0 }; pub const UP: Vec2 = Vec2 { x: 0.0, y: -1.0 }; pub const DOWN: Vec2 = Vec2 { x: 0.0, y: 1.0 }; pub const ZERO: Self = Self { x: 0.0, y: 0.0 }; pub const INFINITY: Self = Self::splat(f32::INFINITY); #[inline(always)] pub const fn new(x: f32, y: f32) -> Self { Self { x, y } } /// Set both `x` and `y` to the same value. #[inline(always)] pub const fn splat(v: f32) -> Self { Self { x: v, y: v } } /// Treat this vector as a position. /// `v.to_pos2()` is equivalent to `Pos2::default() + v`. #[inline(always)] pub fn to_pos2(self) -> crate::Pos2 { crate::Pos2 { x: self.x, y: self.y, } } /// Safe normalize: returns zero if input is zero. #[must_use] #[inline(always)] pub fn normalized(self) -> Self { let len = self.length(); if len <= 0.0 { self } else { self / len } } /// Rotates the vector by 90°, i.e positive X to positive Y /// (clockwise in egui coordinates). #[inline(always)] pub fn rot90(self) -> Self { vec2(self.y, -self.x) } #[inline(always)] pub fn length(self) -> f32 { self.x.hypot(self.y) } #[inline(always)] pub fn length_sq(self) -> f32 { self.x * self.x + self.y * self.y } /// Measures the angle of the vector. /// /// ``` /// # use emath::Vec2; /// use std::f32::consts::TAU; /// /// assert_eq!(Vec2::ZERO.angle(), 0.0); /// assert_eq!(Vec2::angled(0.0).angle(), 0.0); /// assert_eq!(Vec2::angled(1.0).angle(), 1.0); /// assert_eq!(Vec2::X.angle(), 0.0); /// assert_eq!(Vec2::Y.angle(), 0.25 * TAU); /// /// assert_eq!(Vec2::RIGHT.angle(), 0.0); /// assert_eq!(Vec2::DOWN.angle(), 0.25 * TAU); /// assert_eq!(Vec2::UP.angle(), -0.25 * TAU); /// ``` #[inline(always)] pub fn angle(self) -> f32 { self.y.atan2(self.x) } /// Create a unit vector with the given CW angle (in radians). /// * An angle of zero gives the unit X axis. /// * An angle of 𝞃/4 = 90° gives the unit Y axis. /// /// ``` /// # use emath::Vec2; /// use std::f32::consts::TAU; /// /// assert_eq!(Vec2::angled(0.0), Vec2::X); /// assert!((Vec2::angled(0.25 * TAU) - Vec2::Y).length() < 1e-5); /// ``` #[inline(always)] pub fn angled(angle: f32) -> Self { vec2(angle.cos(), angle.sin()) } #[must_use] #[inline(always)] pub fn floor(self) -> Self { vec2(self.x.floor(), self.y.floor()) } #[must_use] #[inline(always)] pub fn round(self) -> Self { vec2(self.x.round(), self.y.round()) } #[must_use] #[inline(always)] pub fn ceil(self) -> Self { vec2(self.x.ceil(), self.y.ceil()) } #[must_use] #[inline] pub fn abs(self) -> Self { vec2(self.x.abs(), self.y.abs()) } /// True if all members are also finite. #[inline(always)] pub fn is_finite(self) -> bool { self.x.is_finite() && self.y.is_finite() } /// True if any member is NaN. #[inline(always)] pub fn any_nan(self) -> bool { self.x.is_nan() || self.y.is_nan() } #[must_use] #[inline] pub fn min(self, other: Self) -> Self { vec2(self.x.min(other.x), self.y.min(other.y)) } #[must_use] #[inline] pub fn max(self, other: Self) -> Self { vec2(self.x.max(other.x), self.y.max(other.y)) } /// The dot-product of two vectors. #[inline] pub fn dot(self, other: Self) -> f32 { self.x * other.x + self.y * other.y } /// Returns the minimum of `self.x` and `self.y`. #[must_use] #[inline(always)] pub fn min_elem(self) -> f32 { self.x.min(self.y) } /// Returns the maximum of `self.x` and `self.y`. #[inline(always)] #[must_use] pub fn max_elem(self) -> f32 { self.x.max(self.y) } #[must_use] #[inline] pub fn clamp(self, min: Self, max: Self) -> Self { Self { x: self.x.clamp(min.x, max.x), y: self.y.clamp(min.y, max.y), } } } impl std::ops::Index for Vec2 { type Output = f32; #[inline(always)] fn index(&self, index: usize) -> &f32 { match index { 0 => &self.x, 1 => &self.y, _ => panic!("Vec2 index out of bounds: {}", index), } } } impl std::ops::IndexMut for Vec2 { #[inline(always)] fn index_mut(&mut self, index: usize) -> &mut f32 { match index { 0 => &mut self.x, 1 => &mut self.y, _ => panic!("Vec2 index out of bounds: {}", index), } } } impl Eq for Vec2 {} impl Neg for Vec2 { type Output = Vec2; #[inline(always)] fn neg(self) -> Vec2 { vec2(-self.x, -self.y) } } impl AddAssign for Vec2 { #[inline(always)] fn add_assign(&mut self, rhs: Vec2) { *self = Vec2 { x: self.x + rhs.x, y: self.y + rhs.y, }; } } impl SubAssign for Vec2 { #[inline(always)] fn sub_assign(&mut self, rhs: Vec2) { *self = Vec2 { x: self.x - rhs.x, y: self.y - rhs.y, }; } } impl Add for Vec2 { type Output = Vec2; #[inline(always)] fn add(self, rhs: Vec2) -> Vec2 { Vec2 { x: self.x + rhs.x, y: self.y + rhs.y, } } } impl Sub for Vec2 { type Output = Vec2; #[inline(always)] fn sub(self, rhs: Vec2) -> Vec2 { Vec2 { x: self.x - rhs.x, y: self.y - rhs.y, } } } /// Element-wise multiplication impl Mul for Vec2 { type Output = Vec2; #[inline(always)] fn mul(self, vec: Vec2) -> Vec2 { Vec2 { x: self.x * vec.x, y: self.y * vec.y, } } } /// Element-wise division impl Div for Vec2 { type Output = Vec2; #[inline(always)] fn div(self, rhs: Vec2) -> Vec2 { Vec2 { x: self.x / rhs.x, y: self.y / rhs.y, } } } impl MulAssign for Vec2 { #[inline(always)] fn mul_assign(&mut self, rhs: f32) { self.x *= rhs; self.y *= rhs; } } impl Mul for Vec2 { type Output = Vec2; #[inline(always)] fn mul(self, factor: f32) -> Vec2 { Vec2 { x: self.x * factor, y: self.y * factor, } } } impl Mul for f32 { type Output = Vec2; #[inline(always)] fn mul(self, vec: Vec2) -> Vec2 { Vec2 { x: self * vec.x, y: self * vec.y, } } } impl Div for Vec2 { type Output = Vec2; #[inline(always)] fn div(self, factor: f32) -> Vec2 { Vec2 { x: self.x / factor, y: self.y / factor, } } } impl std::fmt::Debug for Vec2 { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { write!(f, "[{:.1} {:.1}]", self.x, self.y) } } #[test] fn test_vec2() { macro_rules! almost_eq { ($left: expr, $right: expr) => { let left = $left; let right = $right; assert!((left - right).abs() < 1e-6, "{} != {}", left, right); }; } use std::f32::consts::TAU; assert_eq!(Vec2::ZERO.angle(), 0.0); assert_eq!(Vec2::angled(0.0).angle(), 0.0); assert_eq!(Vec2::angled(1.0).angle(), 1.0); assert_eq!(Vec2::X.angle(), 0.0); assert_eq!(Vec2::Y.angle(), 0.25 * TAU); assert_eq!(Vec2::RIGHT.angle(), 0.0); assert_eq!(Vec2::DOWN.angle(), 0.25 * TAU); almost_eq!(Vec2::LEFT.angle(), 0.50 * TAU); assert_eq!(Vec2::UP.angle(), -0.25 * TAU); }