use std::f32::INFINITY; use std::ops::RangeInclusive; use crate::*; /// A rectangular region of space. /// /// Normally given in points, e.g. logical pixels. #[derive(Clone, Copy, Eq, PartialEq)] #[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))] pub struct Rect { pub min: Pos2, pub max: Pos2, } impl Rect { /// Infinite rectangle that contains everything. pub const EVERYTHING: Self = Self { min: pos2(-INFINITY, -INFINITY), max: pos2(INFINITY, INFINITY), }; /// The inverse of [`Self::EVERYTHING`]: stretches from positive infinity to negative infinity. /// Contains no points. /// /// This is useful as the seed for bounding bounding boxes. /// /// ``` /// # use emath::*; /// let inf = f32::INFINITY; /// assert!(Rect::NOTHING.size() == Vec2::splat(-inf)); /// assert!(Rect::NOTHING.contains(pos2(0.0, 0.0)) == false); /// ``` /// /// # Example: /// ``` /// # use emath::*; /// let mut rect = Rect::NOTHING; /// rect.extend_with(pos2(2.0, 1.0)); /// rect.extend_with(pos2(0.0, 3.0)); /// assert_eq!(rect, Rect::from_min_max(pos2(0.0, 1.0), pos2(2.0, 3.0))) /// ``` pub const NOTHING: Self = Self { min: pos2(INFINITY, INFINITY), max: pos2(-INFINITY, -INFINITY), }; /// An invalid `Rect` filled with [`f32::NAN`]; pub const NAN: Self = Self { min: pos2(f32::NAN, f32::NAN), max: pos2(-f32::NAN, -f32::NAN), }; #[deprecated = "Use Rect::EVERYTHING"] pub fn everything() -> Self { let inf = f32::INFINITY; Self { min: pos2(-inf, -inf), max: pos2(inf, inf), } } #[deprecated = "Use Rect::NOTHING"] pub fn nothing() -> Self { let inf = f32::INFINITY; Self { min: pos2(inf, inf), max: pos2(-inf, -inf), } } #[deprecated = "Use Rect::NAN"] pub fn invalid() -> Self { Self::NAN } #[inline(always)] pub const fn from_min_max(min: Pos2, max: Pos2) -> Self { Rect { min, max } } pub fn from_min_size(min: Pos2, size: Vec2) -> Self { Rect { min, max: min + size, } } pub fn from_center_size(center: Pos2, size: Vec2) -> Self { Rect { min: center - size * 0.5, max: center + size * 0.5, } } pub fn from_x_y_ranges(x_range: RangeInclusive, y_range: RangeInclusive) -> Self { Rect { min: pos2(*x_range.start(), *y_range.start()), max: pos2(*x_range.end(), *y_range.end()), } } pub fn from_two_pos(a: Pos2, b: Pos2) -> Self { Rect { min: pos2(a.x.min(b.x), a.y.min(b.y)), max: pos2(a.x.max(b.x), a.y.max(b.y)), } } /// A `Rect` that contains every point to the right of the given X coordinate. pub fn everything_right_of(left_x: f32) -> Self { let mut rect = Self::EVERYTHING; rect.set_left(left_x); rect } /// A `Rect` that contains every point to the left of the given X coordinate. pub fn everything_left_of(right_x: f32) -> Self { let mut rect = Self::EVERYTHING; rect.set_right(right_x); rect } /// A `Rect` that contains every point below a certain y coordinate pub fn everything_below(top_y: f32) -> Self { let mut rect = Self::EVERYTHING; rect.set_top(top_y); rect } /// A `Rect` that contains every point above a certain y coordinate pub fn everything_above(bottom_y: f32) -> Self { let mut rect = Self::EVERYTHING; rect.set_bottom(bottom_y); rect } /// Expand by this much in each direction, keeping the center #[must_use] pub fn expand(self, amnt: f32) -> Self { self.expand2(Vec2::splat(amnt)) } /// Expand by this much in each direction, keeping the center #[must_use] pub fn expand2(self, amnt: Vec2) -> Self { Rect::from_min_max(self.min - amnt, self.max + amnt) } /// Shrink by this much in each direction, keeping the center #[must_use] pub fn shrink(self, amnt: f32) -> Self { self.shrink2(Vec2::splat(amnt)) } /// Shrink by this much in each direction, keeping the center #[must_use] pub fn shrink2(self, amnt: Vec2) -> Self { Rect::from_min_max(self.min + amnt, self.max - amnt) } #[must_use] pub fn translate(self, amnt: Vec2) -> Self { Rect::from_min_size(self.min + amnt, self.size()) } /// The intersection of two `Rect`, i.e. the area covered by both. #[must_use] pub fn intersect(self, other: Rect) -> Self { Self { min: self.min.max(other.min), max: self.max.min(other.max), } } #[must_use] pub fn intersects(self, other: Rect) -> bool { self.min.x <= other.max.x && other.min.x <= self.max.x && self.min.y <= other.max.y && other.min.y <= self.max.y } /// keep min pub fn set_width(&mut self, w: f32) { self.max.x = self.min.x + w; } /// keep min pub fn set_height(&mut self, h: f32) { self.max.y = self.min.y + h; } /// Keep size pub fn set_center(&mut self, center: Pos2) { *self = self.translate(center - self.center()); } #[must_use] #[inline(always)] pub fn contains(&self, p: Pos2) -> bool { self.min.x <= p.x && p.x <= self.max.x && self.min.y <= p.y && p.y <= self.max.y } /// Return the given points clamped to be inside the rectangle /// Panics if [`Self::is_negative`]. #[must_use] pub fn clamp(&self, p: Pos2) -> Pos2 { p.clamp(self.min, self.max) } pub fn extend_with(&mut self, p: Pos2) { self.min = self.min.min(p); self.max = self.max.max(p); } /// Expand to include the given x coordinate pub fn extend_with_x(&mut self, x: f32) { self.min.x = self.min.x.min(x); self.max.x = self.max.x.max(x); } /// Expand to include the given y coordinate pub fn extend_with_y(&mut self, y: f32) { self.min.y = self.min.y.min(y); self.max.y = self.max.y.max(y); } pub fn union(self, other: Rect) -> Rect { Rect { min: self.min.min(other.min), max: self.max.max(other.max), } } #[inline(always)] pub fn center(&self) -> Pos2 { Pos2 { x: (self.min.x + self.max.x) / 2.0, y: (self.min.y + self.max.y) / 2.0, } } #[inline(always)] pub fn size(&self) -> Vec2 { self.max - self.min } #[inline(always)] pub fn width(&self) -> f32 { self.max.x - self.min.x } #[inline(always)] pub fn height(&self) -> f32 { self.max.y - self.min.y } /// Width / height /// /// * `aspect_ratio < 1`: portrait / high /// * `aspect_ratio = 1`: square /// * `aspect_ratio > 1`: landscape / wide pub fn aspect_ratio(&self) -> f32 { self.width() / self.height() } /// `[2, 1]` for wide screen, and `[1, 2]` for portrait, etc. /// At least one dimension = 1, the other >= 1 /// Returns the proportions required to letter-box a square view area. pub fn square_proportions(&self) -> Vec2 { let w = self.width(); let h = self.height(); if w > h { vec2(w / h, 1.0) } else { vec2(1.0, h / w) } } pub fn area(&self) -> f32 { self.width() * self.height() } pub fn x_range(&self) -> RangeInclusive { self.min.x..=self.max.x } pub fn y_range(&self) -> RangeInclusive { self.min.y..=self.max.y } pub fn bottom_up_range(&self) -> RangeInclusive { self.max.y..=self.min.y } #[deprecated = "Use is_negative instead"] pub fn is_empty(&self) -> bool { self.max.x < self.min.x || self.max.y < self.min.y } /// `width < 0 || height < 0` #[inline(always)] pub fn is_negative(&self) -> bool { self.max.x < self.min.x || self.max.y < self.min.y } #[deprecated = "Use !is_negative() instead"] pub fn is_non_negative(&self) -> bool { !self.is_negative() } /// `width > 0 && height > 0` #[inline(always)] pub fn is_positive(&self) -> bool { self.min.x < self.max.x && self.min.y < self.max.y } /// True if all members are also finite. #[inline(always)] pub fn is_finite(&self) -> bool { self.min.is_finite() && self.max.is_finite() } /// True if any member is NaN. #[inline(always)] pub fn any_nan(self) -> bool { self.min.any_nan() || self.max.any_nan() } } /// ## Convenience functions (assumes origin is towards left top): impl Rect { /// `min.x #[inline(always)] pub fn left(&self) -> f32 { self.min.x } /// `min.x` #[inline(always)] pub fn left_mut(&mut self) -> &mut f32 { &mut self.min.x } /// `min.x` #[inline(always)] pub fn set_left(&mut self, x: f32) { self.min.x = x; } /// `max.x` #[inline(always)] pub fn right(&self) -> f32 { self.max.x } /// `max.x` #[inline(always)] pub fn right_mut(&mut self) -> &mut f32 { &mut self.max.x } /// `max.x` #[inline(always)] pub fn set_right(&mut self, x: f32) { self.max.x = x; } /// `min.y` #[inline(always)] pub fn top(&self) -> f32 { self.min.y } /// `min.y` #[inline(always)] pub fn top_mut(&mut self) -> &mut f32 { &mut self.min.y } /// `min.y` #[inline(always)] pub fn set_top(&mut self, y: f32) { self.min.y = y; } /// `max.y` #[inline(always)] pub fn bottom(&self) -> f32 { self.max.y } /// `max.y` #[inline(always)] pub fn bottom_mut(&mut self) -> &mut f32 { &mut self.max.y } /// `max.y` #[inline(always)] pub fn set_bottom(&mut self, y: f32) { self.max.y = y; } #[inline(always)] pub fn left_top(&self) -> Pos2 { pos2(self.left(), self.top()) } #[inline(always)] pub fn center_top(&self) -> Pos2 { pos2(self.center().x, self.top()) } #[inline(always)] pub fn right_top(&self) -> Pos2 { pos2(self.right(), self.top()) } #[inline(always)] pub fn left_center(&self) -> Pos2 { pos2(self.left(), self.center().y) } #[inline(always)] pub fn right_center(&self) -> Pos2 { pos2(self.right(), self.center().y) } #[inline(always)] pub fn left_bottom(&self) -> Pos2 { pos2(self.left(), self.bottom()) } #[inline(always)] pub fn center_bottom(&self) -> Pos2 { pos2(self.center().x, self.bottom()) } #[inline(always)] pub fn right_bottom(&self) -> Pos2 { pos2(self.right(), self.bottom()) } } impl std::fmt::Debug for Rect { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { write!(f, "[{:?} - {:?}]", self.min, self.max) } } /// from (min, max) or (left top, right bottom) impl From<[Pos2; 2]> for Rect { fn from([min, max]: [Pos2; 2]) -> Self { Self { min, max } } }