Add egui::math::Rot2 rotation helper

This commit is contained in:
Emil Ernerfeldt 2020-12-25 12:22:10 +01:00
parent bb469bf52f
commit 36c15c4e41
7 changed files with 197 additions and 34 deletions

View file

@ -18,6 +18,7 @@ The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/).
* Mouse-over explanation to duplicate ID warning. * Mouse-over explanation to duplicate ID warning.
* You can now easily constrain Egui to a portion of the screen using `RawInput::screen_rect`. * You can now easily constrain Egui to a portion of the screen using `RawInput::screen_rect`.
* You can now control the minimum and maixumum number of decimals to show in a `Slider` or `DragValue`. * You can now control the minimum and maixumum number of decimals to show in a `Slider` or `DragValue`.
* Add `egui::math::Rot2`: rotation helper.
### Changed 🔧 ### Changed 🔧

View file

@ -109,11 +109,9 @@ pub fn paint_icon(ui: &mut Ui, openness: f32, response: &Response) {
// Draw a pointy triangle arrow: // Draw a pointy triangle arrow:
let rect = Rect::from_center_size(rect.center(), vec2(rect.width(), rect.height()) * 0.75); let rect = Rect::from_center_size(rect.center(), vec2(rect.width(), rect.height()) * 0.75);
let mut points = vec![rect.left_top(), rect.right_top(), rect.center_bottom()]; let mut points = vec![rect.left_top(), rect.right_top(), rect.center_bottom()];
let rotation = Vec2::angled(remap(openness, 0.0..=1.0, -TAU / 4.0..=0.0)); let rotation = Rot2::from_angle(remap(openness, 0.0..=1.0, -TAU / 4.0..=0.0));
for p in &mut points { for p in &mut points {
let v = *p - rect.center(); *p = rect.center() + rotation * (*p - rect.center());
let v = rotation.rotate_other(v);
*p = rect.center() + v;
} }
ui.painter().add(PaintCmd::closed_line(points, stroke)); ui.painter().add(PaintCmd::closed_line(points, stroke));

View file

@ -141,8 +141,8 @@ impl FractalClock {
]; ];
let hand_rotors = [ let hand_rotors = [
hands[0].length * Vec2::angled(hand_rotations[0]), hands[0].length * Rot2::from_angle(hand_rotations[0]),
hands[1].length * Vec2::angled(hand_rotations[1]), hands[1].length * Rot2::from_angle(hand_rotations[1]),
]; ];
#[derive(Clone, Copy)] #[derive(Clone, Copy)]
@ -179,9 +179,9 @@ impl FractalClock {
let luminance_u8 = (255.0 * luminance).round() as u8; let luminance_u8 = (255.0 * luminance).round() as u8;
for rotor in &hand_rotors { for &rotor in &hand_rotors {
for a in &nodes { for a in &nodes {
let new_dir = rotor.rotate_other(a.dir); let new_dir = rotor * a.dir;
let b = Node { let b = Node {
pos: a.pos + new_dir, pos: a.pos + new_dir,
dir: new_dir, dir: new_dir,

View file

@ -6,10 +6,11 @@ use std::ops::{Add, Div, Mul, RangeInclusive, Sub};
mod pos2; mod pos2;
mod rect; mod rect;
mod rot2;
pub mod smart_aim; pub mod smart_aim;
mod vec2; mod vec2;
pub use {pos2::*, rect::*, vec2::*}; pub use {pos2::*, rect::*, rot2::*, vec2::*};
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------

183
egui/src/math/rot2.rs Normal file
View file

@ -0,0 +1,183 @@
use super::Vec2;
// {s,c} represents the rotation matrix:
//
// | c -s |
// | s c |
//
// `vec2(c,s)` represents where the X axis will end up after rotation.
//
/// Represents a rotation in the 2D plane.
/// A rotation of 90° rotates the X axis to the Y axis.
/// Normally a `Rot2` is normalized (unit-length).
/// If not, it will also scale vectors.
#[derive(Clone, Copy, PartialEq)]
pub struct Rot2 {
/// angle.sin()
s: f32,
/// angle.cos()
c: f32,
}
/// Identity rotation
impl Default for Rot2 {
/// Identity rotation
fn default() -> Self {
Self { s: 0.0, c: 1.0 }
}
}
impl Rot2 {
pub fn identity() -> Self {
Self { s: 0.0, c: 1.0 }
}
/// A `TAU / 4.0` rotation means rotating the X axis to the Y axis.
pub fn from_angle(angle: f32) -> Self {
let (s, c) = angle.sin_cos();
Self { s, c }
}
pub fn angle(self) -> f32 {
self.s.atan2(self.c)
}
/// The factor by which vectors will be scaled.
pub fn length(self) -> f32 {
self.c.hypot(self.s)
}
pub fn length_squared(self) -> f32 {
self.c.powi(2) + self.s.powi(2)
}
pub fn is_finite(self) -> bool {
self.c.is_finite() && self.s.is_finite()
}
#[must_use]
pub fn inverse(self) -> Rot2 {
Self {
s: -self.s,
c: self.c,
} / self.length_squared()
}
#[must_use]
pub fn normalized(self) -> Self {
let l = self.length();
let ret = Self {
c: self.c / l,
s: self.s / l,
};
debug_assert!(ret.is_finite());
ret
}
}
impl std::fmt::Debug for Rot2 {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(
f,
"Rot2 {{ angle: {:.1}°, length: {} }}",
self.angle().to_degrees(),
self.length()
)
}
}
impl std::ops::Mul<Rot2> for Rot2 {
type Output = Rot2;
fn mul(self, r: Rot2) -> Rot2 {
/*
|lc -ls| * |rc -rs|
|ls lc| |rs rc|
*/
Rot2 {
c: self.c * r.c - self.s * r.s,
s: self.s * r.c + self.c * r.s,
}
}
}
impl std::ops::Mul<Vec2> for Rot2 {
type Output = Vec2;
fn mul(self, v: Vec2) -> Vec2 {
Vec2 {
x: self.c * v.x - self.s * v.y,
y: self.s * v.x + self.c * v.y,
}
}
}
impl std::ops::Mul<Rot2> for f32 {
type Output = Rot2;
fn mul(self, r: Rot2) -> Rot2 {
Rot2 {
c: self * r.c,
s: self * r.s,
}
}
}
impl std::ops::Mul<f32> for Rot2 {
type Output = Rot2;
fn mul(self, r: f32) -> Rot2 {
Rot2 {
c: self.c * r,
s: self.s * r,
}
}
}
impl std::ops::Div<f32> for Rot2 {
type Output = Rot2;
fn div(self, r: f32) -> Rot2 {
Rot2 {
c: self.c / r,
s: self.s / r,
}
}
}
#[cfg(test)]
mod test {
use super::Rot2;
use crate::vec2;
#[test]
fn test_rotation2() {
{
let angle = std::f32::consts::TAU / 6.0;
let rot = Rot2::from_angle(angle);
assert!((rot.angle() - angle).abs() < 1e-5);
assert!((rot * rot.inverse()).angle().abs() < 1e-5);
assert!((rot.inverse() * rot).angle().abs() < 1e-5);
}
{
let angle = std::f32::consts::TAU / 4.0;
let rot = Rot2::from_angle(angle);
assert!(((rot * vec2(1.0, 0.0)) - vec2(0.0, 1.0)).length() < 1e-5);
}
{
// Test rotation and scaling
let angle = std::f32::consts::TAU / 4.0;
let rot = 3.0 * Rot2::from_angle(angle);
let rotated = rot * vec2(1.0, 0.0);
let expected = vec2(0.0, 3.0);
assert!(
(rotated - expected).length() < 1e-5,
"Expected {:?} to equal {:?}. rot: {:?}",
rotated,
expected,
rot,
);
let undone = rot.inverse() * rot;
assert!(undone.angle().abs() < 1e-5);
assert!((undone.length() - 1.0).abs() < 1e-5,);
}
}
}

View file

@ -60,6 +60,8 @@ impl Vec2 {
} }
} }
/// Rotates the vector by 90°, i.e positive X to positive Y
/// (clockwise in Egui coordinates).
#[inline(always)] #[inline(always)]
pub fn rot90(self) -> Self { pub fn rot90(self) -> Self {
vec2(self.y, -self.x) vec2(self.y, -self.x)
@ -85,16 +87,6 @@ impl Vec2 {
vec2(angle.cos(), angle.sin()) vec2(angle.cos(), angle.sin())
} }
/// Use this vector as a rotor, rotating something else.
/// Example: `Vec2::angled(angle).rotate_other(some_vec)`
#[must_use]
pub fn rotate_other(self, v: Vec2) -> Self {
Self {
x: v.x * self.x + v.y * -self.y,
y: v.x * self.y + v.y * self.x,
}
}
#[must_use] #[must_use]
pub fn floor(self) -> Self { pub fn floor(self) -> Self {
vec2(self.x.floor(), self.y.floor()) vec2(self.x.floor(), self.y.floor())

View file

@ -159,22 +159,10 @@ impl Painter {
let tip_length = full_length / 3.0; let tip_length = full_length / 3.0;
let dir = dir.normalized(); let dir = dir.normalized();
let tip = origin + dir * full_length; let tip = origin + dir * full_length;
let angle = TAU / 10.0; let rot = Rot2::from_angle(TAU / 10.0);
self.line_segment([origin, tip], stroke); self.line_segment([origin, tip], stroke);
self.line_segment( self.line_segment([tip, tip - tip_length * (rot * dir)], stroke);
[ self.line_segment([tip, tip - tip_length * (rot.inverse() * dir)], stroke);
tip,
tip - tip_length * Vec2::angled(angle).rotate_other(dir),
],
stroke,
);
self.line_segment(
[
tip,
tip - tip_length * Vec2::angled(-angle).rotate_other(dir),
],
stroke,
);
} }
} }